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Abstract

An evolutionary style model of recontracting is given which guarantees convergence to core allocations of
an underlying cooperative game. Unlike its predecessors in the evolution/learning literature, this is achieved
without assumptions of convexity of the characteristic function or a reliance on random errors. The stochas-
tic stability properties of the model are then examined and it is shown that stochastically stable states solve
a simple and intuitive minimization problem which reduces to maximizing a Rawlsian SWF for a common
class of utility functions. In contrast to previous analyses, the stochastically stable state is unique for a broad
class of utility functions.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The papers of Green [1] and Feldman [2] show how a process of coalitional recontracting
can converge to core allocations of a cooperative game under specific assumptions. The papers
of Agastya [3,4] and Rozen [5] achieve similar results for myopic adaptive processes applied to
non-cooperative representations of characteristic function form games: for convex characteristic
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functions the steady states of the processes lie in the core. Framing the model as an adaptive
process applied to a non-cooperative game with explicit individual strategies allows the theory
of stochastic stability [6,7] to be used to determine which of the steady states of the process is
most robust to random errors made by players when choosing their strategies.

This paper unites these two strands of literature by incorporating joint strategic switching into
the social learning dynamic which drives strategic change in the non-cooperative representation
of any given characteristic function form game. Convergence to interior core allocations is shown
for this dynamic under assumptions similar to those of [1], with some of the more restrictive
assumptions replaced with additional symmetry and uncertainty in the recontracting process. In
contrast to [3,5] and other non-cooperative models of coalition formation [8,9] which assume
convexity or total balancedness of the characteristic function, the process in the paper gives
convergence for any superadditive characteristic function with nonempty interior core. This result
is summarized in Theorem 1.

The second theorem of this paper characterizes the stochastically stable states of the dynamic
process – given the players’ utility functions u(.), it selects within the core allocations. For a
common class of utility functions, those of the form u(d) = adb, stochastically stable states
maximize a Rawlsian social welfare function: the stability of a core allocation increases in the
wealth of the poorest player. Furthermore, when u(.)/u′(.) is convex, a class of utilities which
includes CRRA utility with preexisting wealth, the stochastically stable state is unique. When this
condition holds and u(.) is concave, the stochastically stable state is determined by a trade-off
between maximizing the wealth of the poorest player and minimizing wealth inequality amongst
the remaining players.

The learning dynamic of this paper involves groups of players jointly adjusting their strategies.
Each player’s strategy includes a quantity of good demanded and a set of players with whom he
is willing to form coalitions. Players do not necessarily form coalitions with those with whom
they discuss strategy: sometimes it is in players’ best interests to agree not to be part of the same
coalition. The model of this paper nests several other models. If the size of a group of players
who can jointly adjust their strategies is restricted to equal one, the model is effectively that
of [5]. Adding a further restriction that all players are always willing to form coalitions with
all other players we get a similar model to [3]. A final restriction that gives zero value to all
coalitions other than the grand coalition reduces the model to the model of Nash demand games
of Young [10].

In [4] the stochastically stable states minimize the maximum weighted payoff across all play-
ers. This is because the player whose best response can change after the fewest random errors is
the richest player. The presence of joint strategic switching in the current paper allows the wealth
of every player to play a role in determining how vulnerable a state is to random errors and so
allows a more precise characterization of stochastically stable states. However, equity consider-
ations do still play a significant role in the selection criterion. This paper also differs from the
aforementioned paper in not requiring Inada conditions on the players’ utilities.

A related paper is [11] which gives stochastic stability results for coalitional recontracting in
a housing economy. In the model of that paper there are multiple goods – houses – and each
individual can own one and only one house. The present model has one good which can be held
in any quantity. Another paper which gives core convergence is [12] which unlike this paper and
the other papers in the literature relies on random errors occurring outside of the core to move
the process to a core allocation.

The paper is organized as follows: Section 2 describes the stage game. Section 3 describes
the learning dynamic. Section 4 is concerned with convergence to the core of the unperturbed
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dynamic and contains Theorem 1. Section 5 is concerned with an analysis of the stochastically
stable states of our model and contains Theorem 2. Section 6 discusses some of the innovations
of this paper and identifies avenues for future work. All proofs are relegated to Appendix A.

2. Model

A game Γ = {I, v, δ,F,u} is defined as follows. There are N players indexed I = {1, . . . ,N}.
I = P (I ) is the set of coalitions: the set of all subsets of I . v : I → Q is called the characteristic
function, assumed to satisfy the following:

Assumption 1 (Superadditivity). If S ∩ T = ∅, v(S ∪ T ) � v(S) + v(T ).

Assumption 2 (Nonempty interior core).

C∗(v) =
{
d ∈ RN :

∑
i∈I

di = v(I ),
∑
i∈S

di > v(S) ∀S ⊂ I

}
�= ∅

The core, C(v), is defined identically but with the strict inequality replaced by a weak one.
The smallest money unit, δ, is such that for all S, v(S) is an integral multiple of δ. Σδ

i is defined
as the set of all integral multiples of δ that lie in the interval [v({i}), v(I )]. δ is assumed small
enough that {d ∈ C∗(v)|di ∈ Σδ

i ∀i} is nonempty.2

This paper looks at a non-cooperative representation of the cooperative game {I, v} in which
each player i chooses a set of all possible players Pi ⊆ I with whom he is willing to form
coalitions. Assume a player is always willing to form a coalition with himself, that is for all i,
i ∈ Pi . Players also choose a demand di ∈ Σδ

i . The strategies chosen by all players are denoted
(d,P ) where d = (d1, . . . , dN) and P = (P1, . . . ,PN). (d, I ) is used as shorthand when P =
(I, . . . , I ).

Denote the set of partitions of I as Π(I).

Definitions. Demand feasibility for π ∈ Π(I) and strategies (d,P ) is satisfied if ∀S ∈ π with
|S| � 2,

∑
i∈S di � v(S). π ∈ Π(I) and (d,P ) are mutually compatible if ∀S ∈ π , i ∈ S ⇒

S ⊆ Pi . A coalition structure π ∈ Π(I) is feasible for (d,P ) if it satisfies mutual compatibility
and demand feasibility.

The game proceeds as follows. Players choose strategies simultaneously. π ∈ Π(I) is then
chosen according to a distribution F(d,P )(π) over the coalition structures π which are feasible
for (d,P ). The family of these distributions indexed by (d,P ) is denoted F .

Assumption 3. If π1 and π2 are feasible for (d,P ) and π2 is a coarsening of π1 then
F(d,P )(π

1) = 0.

This restriction simply says that all else being equal, players will form larger coalitions rather
than smaller ones. No further conditions are placed on F(d,P ). If π denotes a non-singleton
coalition for player i then he receives di of the good. Otherwise he receives v({i}) of the good.

2 Discretization is carried out to aid stochastic stability analysis and Theorem 2.
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The amounts of good received by each player are referred to as an allocation. Each player has a
strictly increasing vNM utility function ui : R+ → R which is a function of the amount of good
received. Let Ui((d,P )) be the expected utility of player i when strategy profile (d,P ) is played.

Allocations in C∗(v) can only be supported if the grand coalition forms, although the forma-
tion of the grand coalition does not guarantee that the ensuing allocation will be in C∗(v). The
grand coalition can only form if Pi = I ∀i ∈ I . That is, all players must be willing to form coali-
tions with all other players for the grand coalition to be able to form. Γ has many Nash equilibria.
For example, any profile with Pi = {i} ∀i ∈ I is a Nash equilibrium no matter what demands di

are. Any profile (d,P ) with d ∈ C∗(v), Pi = I ∀i ∈ I is a strict Nash equilibrium of Γ : if a given
player were to increase his demand then no coalitions which include that player would satisfy
demand feasibility so he would obtain v({i}) of the good. The reverse inclusion does not hold:
not all strict Nash equilibria are contained in C∗(v), as is demonstrated in Example 4.1 later in
the paper.

3. Learning

The learning process in this paper features sets of players jointly choosing their actions so
as to best respond to the state of the world as they perceive it to be. These players do not form
exclusive coalitions but instead jointly decide the set of coalition partners they are each willing
to accept which may or may not include one another – players can agree to keep out of each
other’s way. The dynamic proposed is essentially adaptive play as in [13] with some work going
into defining what constitutes a best response for a group of players. Under adaptive play, players
repeatedly play an N player game Γ . Each period, strategies are determined before Γ is played.
Γ is as described in Section 2.

We note that in [13] adaptive play is interpreted as modeling situations in which each player
is a representative agent picked at random from some population of similar agents. This inter-
pretation is also a valid possibility for this paper, but for the sake of clarity we stick to using the
term ‘player’ to describe a position in a game, whether it is the same agent repeatedly playing or
various agents plucked randomly with replacement from some underlying population. In order
to facilitate a stochastic stability analysis in the second half of this paper we will need the oppor-
tunity to perturb the learning process by introducing random errors. When choosing a strategy
there is a probability ε � 0 that any given player will play a strategy chosen at random from the
set of all possible strategies (demands and coalition requests). These errors occur independently
across players. It is emphasized that Theorem 1 relates to the process without random errors,
ε = 0.

3.1. Sampling

Define (dt ,P t ) as the actions played at time t . Let the history ht = ((dt ,P t ), (dt−1,P t−1),

. . . , (dt−m+1,P t−m+1)) denote the action profiles for the m ∈ N periods up to time t . Let H
denote the set of all possible histories. The change in actions from period to period can then
be modeled as a Markov chain. At the start of each period each player i randomly samples
ki of the previous m periods. Assume m � 2 maxi ki .3 Let the periods in player i’s sample be
denoted σ t

i ⊂ {t − 1, t − 2, . . . , t − m}, |σ t
i | = ki . For each period sampled every player’s action

3 The condition that m be ‘large enough’ is common in the literature.



368 J. Newton / Journal of Economic Theory 147 (2012) 364–381
is observed. Following [4] it is assumed that a player considers each of the d−i from the sampled
periods to be equally likely: he assumes that the actions of his opponents are correlated. Let
Ui((d,P )S |σ t

i ) denote player i’s expected payoff when players in set S ⊆ I take actions (d,P )S
and i assumes the players outside S play with probabilities in proportion to his sample:

Ui

(
(d,P )S |σ t

i

) := 1

ki

∑
τ∈σ t

i

Ui

(
(d,P )S,

(
dτ ,P τ

)
I\S

)

The minimum acceptable expected payoff ut
i for a player is defined to be his average payoff from

the periods in his sample:

ut
i := 1

ki

∑
τ∈σ t

i

Ui

((
dτ ,P τ

))

3.2. Choice of strategy

Each player independently makes an error with probability ε � 0. If a player i makes an error
he selects a strategy at random according to a distribution with full support over all strategies
and we set 
t

i = 1. Otherwise we let 
t
i = 0. 
t is the matrix of 
t

i from periods t − m + 1
to t , 
t ∈ {0,1}N×m =: K. Denote the set of players who have not made an error in the current
period as I t\ε = {i ∈ I : 
t

i = 0}. A partition of non-error making players ρt ∈ Π(I t\ε) is randomly
selected from a distribution GIt\ε(ρ).

Assumption 4. GIt\ε(ρ) has full support on Π(I t\ε).

When a set of players S chooses new strategies, we allow a small amount of public random-
ization to take place when it comes to selecting the strategies that will in fact be played. This is to
circumvent an issue introduced by discretization and is important for Theorem 2 but unnecessary
for Theorem 1. Let Q be the set of all distributions on (d,P )S such that:

∀q ∈ Q: (d̃, P̃ )S, (d̄, P̄ )S ∈ supp(q) ⇒ ∀i, |d̃i − d̄i | ∈ {0, δ}, P̃i = P̄i

If public randomization is disallowed and we restrict the support of every q ∈ Q to be a singleton
then Theorem 1 still holds. What randomization in effect allows is for a player to make demands
for fractions of δ. Where possible, S will choose strategies so that each i ∈ S obtains at least ut

i

and the strategies are Pareto efficient with respect to the payoffs of players in S. Define:

D1t
S = {

q ∈ Q: ∀i ∈ S, Eq

[
Ui

(
(d,P )S |σ t

i

)]
� ut

i

}
D2t

S = {
q ∈ Q: �q̃ ∈ Q such that

Eq̃

[
Ui

(
(d,P )S |σ t

i

)]
� Eq

[
Ui

(
(d,P )S |σ t

i

)] ∀i ∈ S,

Eq̃

[
Ui

(
(d,P )S |σ t

i

)]
> Eq

[
Ui

(
(d,P )S |σ t

i

)]
for some i ∈ S

}
When players in S choose from D1t

S ∩ D2t
S the outcome will be from a set Dt

S .

Dt
S = {

(d,P )S : ∃q ∈ D1t
S ∩ D2t

S with (d,P )S ∈ Supp(q)
}

Assumption 5. For each S ∈ ρt , if Dt
S is nonempty, (dt ,P t )S is chosen from a distribution with

full support over Dt .
S
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Dt
S comprises the outcomes which can arise when S chooses Pareto efficient sets of strategies

that give all j ∈ S an expected payoff weakly higher than ut
j . When calculating their expected

utility given (d,P )S , a player in S takes expectations over his distribution on the actions of
players outside S.

Assumption 6. If Dt
S = ∅ all i ∈ S best respond as they would in standard adaptive play, that is

they play:(
dt
i ,P

t
i

) ∈ arg max
Pi⊆I

di∈Σδ
i

Ui

(
(di,Pi)|σ t

i

)

By the description above it can be seen that the strategies chosen are binding for the current
period only. No agreements are made which bind the actions of players in future periods. This
is in keeping with the interpretation of the game as one being played by representative agents
plucked from populations on a period by period basis: no agent can make a commitment as
regards the future actions of agents playing in the same position in the game. This interpretation
of the model also justifies the lack of foresight in the players’ choices of strategy: it makes sense
for them to act as myopic best responders if they are unlikely to be playing the game again in the
near future.

3.3. Game stage

The game Γ described in Section 2 is then played using strategies (dt ,P t ) determined as
above.

Define Ω = H × K, ωt = (ht , 
t ) ∈ Ω . The perturbed process with ε > 0 gives an aperi-
odic Markov process Mε

Ω over Ω with transition kernel Pε(x,A), x ∈ Ω , A ⊆ Ω . Mε
Ω has a

unique ergodic distribution λε
Ω . The unperturbed process is denoted MΩ with transition proba-

bilities P(x,A). Theorem 1 concerns the absorbing allocations of MΩ . Theorem 2 concerns the
stochastically stable states, the ω ∈ Ω for which limε→0 λε

Ω(ω) > 0.
Note that the process restricted so that |S| = 1 ∀S ∈ ρt , ∀t is effectively the process of [5]. If

we further restrict the process so that Pi = I ∀i ∈ I then we have a similar model to [4]. Finally,
if in addition to these restrictions we have that v(S) = 0 ∀S �= I we return to the model of [10].
Restrictions relating the process in this paper to those of [1] and [2] are discussed in Section 6.

4. Convergence

Definition. A state ω ∈ Ω is a convention if P(ω,ω) = 1. Let C ⊂ Ω denote the set of conven-
tions.

We show that under our learning dynamic convergence to the interior core is guaranteed when
the interior core is nonempty: joint strategic switching enables the equivalence between core
allocations and conventions which was shown in [4] to hold for convex characteristic functions
to be extended to all superadditive characteristic functions.

Theorem 1. If Assumptions 1–6 hold:

(i) ω = (h,
) ∈ C if and only if h = (d, I )m for some d ∈ C∗(v), 
 = 0.
(ii) For all ω ∈ Ω , Pt (ω,C) → 1 as t → ∞.
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The intuition for the proof of convergence is as follows. Starting from any set of players S

who will only form coalitions with players within S, subsets of S who can gain higher payoffs
on their own will separate from S. They do this by adjusting their strategies so as to commit not
to form coalitions with players outside of the subset in question. This continues until we are left
with subsets of players Sl who will only form coalitions with players within Sl and for whom
any strict subset T ⊂ Sl has its characteristic function inequality satisfied. Starting within such
an Sl , a subset of players who can guarantee themselves a higher payoff by going into a coalition
with players outside Sl do so, before being forgotten and left on their own by the players with
whom they went into coalition, leaving the status quo ante only with Sl now split into two. This
process of separation can continue until we are left with a partition {S1, . . . , Sα} and demands
such that the only characteristic function inequalities left unsatisfied involve unions of elements
of the partition. All characteristic functions involving strict subsets of players from any Sl are
satisfied. No players outside of a given Sl are concerned with the allocation within Sl , so all
elements of the partition can be joined together and the surplus from creating

⋃n
i=1 Sl shared so

that all characteristic functions are satisfied.

4.1. Example (Agastya [3])

We examine an example of a non-convex characteristic function.4 Let I = {1,2,3,4},
v({i}) = 0, v({i, j}) = v({i, j, k}) = 7, v(I ) = 16 where i �= j �= k ∈ I , m = 2ki = 2 ∀i,
u(d) = d . This characteristic function is non-convex as:

v
({1,2,3}) + v

({3}) = 7 < 14 = v
({1,3}) + v

({2,3})
Let the distribution over feasible coalitions be such that all feasible coalition structures are
equally likely to form. Then the allocation (3,3,3,7) is a steady state for the processes de-
scribed by [3] and [5], with the strategies in the latter formulation also specifying that every
player is willing to form coalitions with every other player. This allocation is not a core alloca-
tion, for example d1 +d2 = 3+3 < v({1,2}) = 7. To see that it is strict Nash first note that player
4 cannot improve his payoff by adjusting his strategy as he cannot possibly do better outside the
grand coalition and within the grand coalition his payoffs are bounded by v(I ) less the demands
of the other players:

v(I ) − d1 − d2 − d3 = 16 − 3 − 3 − 3 = 7

If one of the other players, say player 1, were to deviate and demand 3 < d1 � 4 then the only
coalitions which would be feasible would be {1,2}, {2,3}, {1,3}, each of which would have an
equal chance of forming. Thus player 1’s expected payoff would be 2

3d1 � 2
3 4 < 3 so he will not

deviate. If he were to deviate and demand d1 > 4 then he would have no chance of being part of
a feasible coalition and would earn expected payoff of zero.5

In our model this allocation is unstable. The partition ρ = {{1,2}, {3}, {4}} could form, leading
players 1 and 2 to play:

di = 7

2
, Pi = {1,2}, i = 1,2

4 A characteristic function is said to be convex if v(S ∪ T ) + v(S ∩ T ) � v(S) + v(T ) for all S,T ⊆ I .
5 Under Rozen’s formulation a deviation to d1 = 4 and P1 = {1,2} would lead to {1,2}, {2,3} forming with equal

probability to give expected payoff to player 1 of 1
2 4 < 3. A deviation to d1 = 4 and P1 = {1,2,3} or P1 = I would lead

to {1,2}, {2,3}, {1,3} forming with equal probability to give expected payoff to player 1 of 2 4 < 3.
3
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which would give both players a higher payoff than 3. However, this would cause players 3
and 4 to obtain payoffs of 0, so in the next period there would be a possibility of all the players
agreeing to play Pi = I , di = 4 ∀i, which is an interior core allocation and stable. Note that
Pi = I , d = (3,4,4,5) which is a core allocation but not an interior core allocation is not stable
under our dynamic, because players 1 and 2 could switch to playing Pi = {1,2}, thus breaking
up the grand coalition.

4.2. Example (Theorem 1)

This example demonstrates the process which gives rise to Theorem 1. Let I = {1,2,3,4},
v({i}) = 0, v({1,2}) = 3, v({3,4}) = 7, v({1,3}) = v({2,3}) = v({1,4}) = v({2,4}) = 0,
v({1,2,3}) = v({1,2,4}) = 3, v({1,3,4}) = v({2,3,4}) = 11, v(I ) = 16 where i ∈ I , m =
2ki = 2 ∀i. Say we start at time τ with P τ

i = {I } for all players and dτ
1 = 5, dτ

2 = 9, dτ
3 = dτ

4 = 1.
This is not in the interior core and so can be broken the next period as all players sample
σ τ+1

i = {τ } and players 3 and 4 agree to play P τ+1
i = {3,4}, dτ+1

3 = 3, dτ+1
4 = 4. Players 1

and 2 continue to play the same strategies as before and consequently earn zero payoff. The fol-
lowing period players 1 and 2 sample σ τ+2

i = {τ +1} and agree to play P τ+2
i = {1,2}, dτ+2

1 = 1,
dτ+2

2 = 2. Players 3 and 4 sample σ τ+2
i = {τ } and play the same strategies as in period τ + 1.

Note that the characteristic function inequality for {1,3,4} is not satisfied:

dτ+2
1 + dτ+2

3 + dτ+2
4 = 1 + 3 + 4 = 8 < 11 = v

({1,3,4})

Subsequently all players sample σ τ+3
i = {τ + 2} and players 1, 3 and 4 agree to play P τ+3

i =
{1,3,4}, dτ+3

1 = 3, dτ+3
3 = 4, dτ+3

4 = 4. The following period player 2 samples σ τ+4
2 = {τ + 3}

and plays P τ+4
2 = {2}. Players 3 and 4 sample σ τ+4

i = {τ + 2} and return to playing P τ+4
i =

{3,4}, so that the coalition structure {{1}, {2}, {3,4}} forms, leaving players 1 and 2 once again
earning zero payoff. Note that the only characteristic functions left unsatisfied are now those
which involve unions of elements of the coalition structure. This means that the following period
all players can sample στ+5

i = {τ + 4} and agree to P τ+5
i = {I } ∀i and an allocation in the

interior core, for example dτ+5
1 = dτ+5

2 = dτ+5
3 = dτ+5

4 = 4.

5. Stochastic stability

From hereon in it is assumed that ε > 0. This section analyzes what happens as ε becomes
small and determines the stochastically stable states of our model. The following technical as-
sumption, under which Theorem 1 still holds, replaces Assumption 4 and is introduced to get rid
of feedback from a player’s own errors to his actions:

Assumption 7. GIt\ε(ρ) has full support on {ρ ∈ Π(I t\ε): i, j ∈ S ∈ ρ, τ ∈ σ t
i , 
τ

j = 1 ⇒
|S| = 1}.

This assumption eliminates the possibility of groups of players responding to their own errors.
Switches between conventions will be driven by groups of players responding to random errors
made by players outside the group in question. An equally useful assumption for our purposes
would be that if a player sampled a period in which he or one of his negotiating partners had
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made an error then he would discard that observation and draw another. Without this assumption
it is always possible to switch between conventions with a single error.6

Definitions. ω ∈ Ω is a stochastically stable state if and only if:

lim
ε→0

λε
Ω(ω) > 0

Let αi = ki

m
and fix αi ∀i. An allocation d is a stochastically stable allocation if there exists a

stochastically stable state with allocation d for arbitrarily large m.

αi , a player’s sample size as a proportion of m, can be thought of as a measure of his smartness.
Utilities and characteristic functions are normalized so that u(0) = 0 and v({i}) = 0 and assumed
to satisfy:

Assumption 8. u(.) is continuously differentiable.

Definition.

D∗ =
{
d: d ∈ arg min

d∈C(v)
max
j∈I

∑
i �=j

1

αi

(
∂ logui(di)

∂di

)−1}

Recall the definition of δ as the smallest money unit which was given in Section 2. The fol-
lowing theorem characterizes stochastically stable allocations as δ becomes small and gives a
condition under which there is a unique limit of stochastically stable allocations.

Theorem 2. Let {dn}δn>0 be any convergent infinite sequence of stochastically stable allocations
with δn → 0. Under Assumptions 1–3, 5–8:

(i) limδn→0 dn ∈ D∗.
(ii) If ui(.)

u′
i (.)

is strictly convex for all i ∈ I then D∗ is a singleton.

Note that D∗ is defined for the core rather than for the interior core. This is because limits
of sequences of interior core allocations will not necessarily be in the interior core, but will be
in the core. The proof shows that, from any convention, as δ → 0, the easiest way to leave the
convention is for a single player to make errors, demanding a small amount more than he receives
in the current convention, following which the other players drop their demands (in expectation)
by a small amount to ensure that their demands continue to be met. By jointly reducing their
demands they share the utility loss of receiving less than they did before. It is then proven that
once this process has started it is possible to transition to any other convention. Minimum cost
spanning tree methods of [7] can then be used to show that limits of stochastically stable states
must solve the optimization problem in the definition of D∗.

6 Without Assumption 7 it could happen that from a convention with ht = (d, I )m , d ∈ C∗(v), a player j ∈ I makes an

error, demanding dj + δ. If in the next period player i samples player j ’s error and S = {i, j} ∈ ρt+1 then both players

could achieve expected payoffs greater than ut+1
i

, ut+1
j

respectively if with small probability a they play dt+1
i

= di − δ,

dt+1
j

= dj + δ and with probability 1 − a they play dt+1
S

= d . Movement between adjacent conventions would require
only a single error and all conventions would be stochastically stable.
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When marginal utility decreases with wealth, players who do better in a convention are less
reluctant to reduce their demands. This suggests that the easier ways to leave a convention involve
richer players responding to the errors of poorer players and that more egalitarian conventions
may be more stable.7 In fact, for a cooperative game where the amount of good received is
identical to the agents’ utilities or the utilities equal the allocation of good raised to some positive
power (including CRRA utility) the following result follows directly from Theorem 2.

Corollary. If ui(d) = adb, a, b ∈ R++, αi = α for all i ∈ I then limits of stochastically stable
allocations maximize the Rawlsian social welfare function:

d ∈ arg max
d∈C(v)

min
i∈I

di

So the dynamic process and stochastic stability characterization of this paper provide an
underpinning to the Rawlsian social welfare function. If αi differ between agents then the al-
locations in the objective function are weighted by the reciprocal of αi so that the amount of
good agent i receives is weakly increasing in αi : it pays to be smart. Theorem 2 is now further
examined through some examples.

5.1. Example

Let I = {1,2,3,4}, v({1}) = v({2}) = 0, v({3}) = 20, v({4}) = 40, v({1,2}) = 0, v({2,3}) =
70, v({3,4}) = 100, v({1,3}) = 20, v({1,4}) = v({2,4}) = 40, v({1,2,3}) = 70, v({1,2,4}) =
40, v({1,3,4}) = 100, v({2,3,4}) = 110, v(I ) = 120.

Take ui(di) = log (1 + di), αi = α ∀i. Then the allocation (10,10,60,40) ∈ D∗. Moreover,
ui(di)/u

′
i (di) = (1 + di) log(1 + di) is strictly convex so the allocation is in fact the limit of any

sequence of stochastically stable allocations as δ → 0. As δ gets small, all stochastically stable
allocations are close to (10,10,60,40).

Now take ui(di) = 1 − e−di , αi = α ∀i. We again have strict convexity of ui(di)/u
′
i (di) =

2(edi − 1), however now the unique limit is the allocation (0,20,50,50). To raise the minimum
value of (αj ∂ loguj (dj )/∂dj )

−1, j ∈ {1,2,3,4}, requires that player 3 be paid above 50 and the
exponential term in the objective function ensures that this is too expensive.

Concave u(.) implies increasing ui(di)/u
′
i (di) which implies that if the allocation of the poor-

est player can be increased without increasing the allocations of any of the other players then
doing so makes an allocation more stable. Also, strictly convex ui(di)/u

′
i (di) implies that if we

keep the allocation of the poorest player constant then stability is increased by lowering wealth
inequality amongst the other N − 1 players.

5.2. Example

Let I = {1,2,3}, v({1}) = 60, v({2}) = v({3}) = 0, v({1,2}) = 100, v({1,3}) = 60,
v({2,3}) = 0, v({1,2,3}) = 120.

7 A similar result in [4] characterizes stable allocations as minimizing the maximum weighted payoff amongst players.
Joint strategic switching allows the payoffs of all players to determine the stable allocation. [10] predicts the Nash
bargaining solution. The results of [14] which predict the Kalai–Smorodinsky bargaining solution are for a different
model where if players fail to coordinate on a specific division of surplus then they obtain nothing.
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If αi = α ∀i, then concave utility which gives strictly convex ui(di)/u
′
i (di) will select the

limit allocation (60,40,20). However, if ui(di) = d1−υ
i /(1 − υ), υ > 0, then the corollary to

Theorem 2 applies and d ∈ D∗ maximize the minimum allocation, player 3’s in this case, subject
to fulfilling the constraints of the characteristic function. So all allocations (60 + x,40 − x,20),
x ∈ [0,20] are in D∗. However, only the allocation (80,20,20) is a limit of stochastically stable
states. This is because (1/δ[ui(di) − ui(di − δ)/ui(di)])−1 is concave and only becomes linear
in the limit.8 However, if players have CRRA utility and some existing wealth ξi , then their
normalized utility ui(di) = ((di + ξi)

1−υ − ξ1−υ
i )/(1 − υ) gives convex ui(di)/u

′
i (di).

6. Discussion

6.1. Discretization and randomization

The small amount of randomization in the definition of Dt
S merits some comment. The model

involves players sometimes sharing gains and losses. Sharing the smallest possible amount is by
definition impossible. However, given that we are interested in the limit as the smallest possible
amount approaches zero, we would like it to be possible. This problem is circumvented by intro-
ducing the possibility of randomization, which can be taken literally or as an approximation for
what happens when dealing with quantities smaller than δ. It is worth noting that as utility is con-
tinuously differentiable and vNM, the utility of the randomization aiui(di − δ) + (1 − ai)ui(di)

approaches ui(di − aiδ) as δ → 0, implying that the randomization is reasonable in the context
in which it is used in this paper.

6.2. Relation to Green [1] and Feldman [2]

The models of [1] and [2] have m = ki = 1 and the restriction that each period, for some
S ∈ ρt , if Dt

S �= ∅ then T ∈ ρt ⇒ Pi = T ∀i ∈ T : players who discuss strategy must form
coalitions with one another. If Dt

S = ∅ then (d,P )t = (d,P )t−1. [1] also imposes ρt = {S, I \S},
i ∈ I \ S ⇒ ut

i < v({i}) (implied by Assumptions 7 and 1 of [1] respectively). [2] imposes the
alternative restriction that ρt = {S, {i}, . . . , {j}}. Both processes are asymmetric: some set S acts
in a similar fashion to the process in the current paper, whereas players outside S are treated
differently. In [1], players in I \ S will accept any Pareto strategies and effectively have no
reservation utility. In [2], players in I \ S are assumed to remain singletons.

6.3. Further direction

A natural extension of this paper would be for the methodology to be applied to cases where
the underlying cooperative game is in partition function form and the set of attainable payoffs for
any coalition S that forms in a given period depends on the coalition structure of players outside
of S. The payoffs of groups of players in the current model already depend on the strategies of
other players as these strategies help to determine which coalition structures will form in each
period. However, a superadditivity assumption makes less intuitive sense when payoffs depend
on partitions and results of interest may be obtained when this is weakened.

8 If it were the case that υ < 0 then this expression would be convex and become linear in the limit, again selecting
(60,40,20) as the only limit of stable allocations.
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Appendix A

Proof of Theorem 1. First the if part of (i) is proven.

ωt−1 = ω = (
(d, I )m,0

)
for some d ∈ C∗(v) ⇒ ut

i = ui(di) ∀i ∈ I

∀S ∈ ρt , Ui

((
dt ,P t

)
S
|σ t

i

)
� ut

i ∀i ∈ S ⇒ Ui

((
dt ,P t

)
S
, (d, I )I\S

)
� ui(di)

⇒ (
dt ,P t

)
S

= (d, I )S ⇒ P(ω,ω) = 1 ⇒ ω ∈ C

The only if part of (i) is proven if the convergence of part (ii) of the theorem takes the process to
states of the requisite form. Assume ki = 1 for all i, m � 2. To expand the proof to all ki simply
allow each strategy profile in the proof to be repeated k̄ = maxi ki times. Let dt

i := u−1(ut
i).

Period 1 Let (d1,P 1): d1 /∈ C∗(v) or P 1 �= IN . With positive probability the following events
occur.

Period 2 Let � = {S1, S2, . . . , Sα} be such that: i ∈ Sl ⇒ P 1
i ⊆ Sl . ∀i ∈ I : σ 2

i = {1}. Let:

S1 :=
{
S ⊂ I s.t. ∃Sn ∈ �: S ⊂ Sn, v(S) �

∑
i∈S

d2
i

}

S2 :=
{
S ⊂ I : ∃Sn ∈ � s.t. Sn ∩ S �= ∅, Sn � S, v(S) �

∑
i∈S

d2
i

}

S :=

⎧⎪⎨
⎪⎩

S1 if S1 �= ∅
S2 if S1 = ∅, S2 �= ∅
∅ if S1 = ∅, S2 = ∅

T ∈ arg max
S∈S

v(S) −
∑
i∈S

d2
i

ρ2 = {T ,S1 \ T ,S2 \ T , . . . , Sα \ T }. For some j ∈ Sn ∩ T : P 2
j = T , d2

j = d1
j + v(T ) −∑

i∈T �d2
i /δ�δ. ∀i ∈ T , i �= j : P 2

i = T , d2
i = �d2

i /δ�δ. Then (d2,P 2)T ∈ D2
T . ∀l, ∀i ∈ Sl \T ,

P 2
i ⊆ Sl .

Period 3 ρ3 = {S1, S2, . . . , Sn \ T ,Sn ∩ T , . . . , Sα}. ∀i ∈ Sn ∩ T : σ 3
i = {2}, P 3

i ⊆ Sn ∪ T . ∀i ∈
Sn \ T : σ 3

i = {2}, P 3
i ⊆ Sn \ T . ∀l, ∀i ∈ Sl , l �= n: σ 3

i = {1}, P 3
i ⊆ Sl .

Period 4 ρ4 = {S1, S2, . . . , Sn \ T ,Sn ∩ T , . . . , Sα}. ∀i ∈ Sn ∩ T : σ 4
i = {3}, P 4

i ⊆ Sn ∩ T . ∀i ∈
Sn \ T : σ 4

i = {2}, P 4
i ⊆ Sn \ T . ∀i ∈ Sl , l �= n: σ 4

i = {3}, P 4
i ⊆ Sl ∪ T .

Period 5 ρ5 = {S1, S2, . . . , Sn \ T ,Sn ∩ T , . . . , Sα}. ∀i ∈ Sn ∩ T : σ 5
i = {3}, P 5

i ⊆ Sn ∩ T . ∀i ∈
Sn \ T : σ 5

i = {4}, P 5
i ⊆ Sn \ T . ∀i ∈ Sl , l �= n: σ 5

i = {4}, P 5
i ⊆ Sl .

Period 6 to τ Reindexing {S1, S2, . . . , Sn \ T ,Sn ∩ T , . . . , Sα} as {S1, S2, . . . , Sα} =: �, periods
2 to 5 can be repeated until S = ∅. This must happen as � becomes a finer partition with
each iteration and if � were to be composed entirely of singletons then S = ∅.

Period τ + 1 ∀i: σ τ+1
i = {τ } so that S = ∅ and

v(S) �
∑
i∈S

dτ+1
i ⇒ S =

⋃
l∈L

Sl for some L ⊆ {1, . . . , α}

ρτ+1 = {I }. ∀i: P τ+1
i = I , dτ+1

i � dτ+1
i . dτ+1 ∈ C∗(v). To see that such an allocation exists

first note that for d ∈ C∗(v), for any Sl we must have
∑

di > v(Sl) �
∑

dτ+1. For
i∈Sl i∈Sl i



376 J. Newton / Journal of Economic Theory 147 (2012) 364–381
S = ⋃
l∈L Sl it must be that

∑
i∈S di > v(S) �

∑
Sl⊆S v(Sl) �

∑
Sl⊆S

∑
i∈Sl

dτ+1
i . If this

is satisfied it remains so when we change di , i ∈ Sl , while leaving
∑

i∈Sl
di unchanged.

So we choose di � dτ+1
i ∀i which implies that

∑
i∈S di > v(S) for all S �= ⋃

l∈L Sl . So
C∗(v) �= ∅ ⇒ {d ∈ C∗(v): di � dτ+1

i ∀i} �= ∅. �
To prove Theorem 2 we begin by showing that for any given interior core allocation, for small

enough δ the least cost (in terms of random errors) way of inducing a best response from any
set of players which differs from a current convention is via N − 1 player best responses to
individual errors. That is to say: one player mutates until every other player agrees together to
best respond in a way that differs from their conventional strategies.

Lemma 1. Let j ∈ arg maxi∈I ki[ui(di )−ui(di−δ)
ui (di )

]. Let d ∈ C∗(v). Define μ∗(d), ai > 0, i �= j , as
the unique constants which solve

∑
i �=j ai = 1 and:

kiai

[
ui(di) − ui(di − δ)

ui(di)

]
= μ∗(d) ∀i ∈ I, i �= j

Then ∃δ∗ > 0 such that ∀δ ∈ (0, δ∗), from convention (d, I )m, the minimum number of random
errors required for any set of players to respond in a way that differs from conventional demand
d is equal to �μ∗(d)�. μ∗(d) can also be expressed as:

μ∗(d) = min
j∈I

(∑
i �=j

1

ki

[
ui(di)

ui(di) − ui(di − δ)

])−1

= min
j∈I

(∑
i �=j

1

αi

[
ui(di)

ui(di) − ui(di − δ)

])−1

m

Proof. Let hτ ′ = (d, I )m be the convention at time τ ′. Let ω̃ be the first state, say at time τ > τ ′
at which a set of players S is the first set of players to play actions which differ from (d, I )S
without making any random errors. Let (d,P )∗S denote these actions. (d,P )∗S ∈ supp(q) for
some q ∈ D1τ

S ∩ D2τ
S . For each i ∈ S there must exist a sample σ τ

i , |σ τ
i | = ki such that:

Eq

[
Ui

(
(d,P )∗S |σ τ

i

)]
� uτ

i = 1

ki

∑
j∈στ

i

Ui

((
dj ,P j

)) = Ui

(
(d, I )S |σ τ

i

) ∀i ∈ S, |S| � 2

where the final equality follows as Assumption 7 ⇒ (dj ,P j )i = (d, I )i ∀i ∈ S, j ∈ σ τ
i . For

|S| = 1, Pareto efficiency implies that Eq [Ui((d,P )∗S |σ τ
i )] � Ui((d, I )S |σ τ

i ). Let there be Li

observations in σ τ
i where the actions of at least one player differ from those of (d, I ), Li := |{t ∈

σ τ
i : (dt ,P t ) �= (d, I )}| Without loss of generality assume these are the most recent observations

from σi : {t ∈ σ τ
i : (dt ,P t ) �= (d, I )} = {τ −Li, . . . , τ − 1}. Note that by the definition of ω̃, each

of the sampled observations not equal to (d, I ) involves at least one error.

Case 1. (
∑

i∈S d∗
i <

∑
i∈S di). We have:

Eq

[
ui

(
d∗
i

)]
� Eq

[
Ui

(
(d,P )∗S |σ τ

i

)]
� Ui

(
(d, I )S |σ τ

i

)
�

(
1 − Li

ki

)
ui(di)
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Where the first inequality is because a player can never do better than to obtain his demand
with certainty, the second inequality follows by hypothesis and the third from player i’s subjec-
tive probability of (d, I )I\S being played. Rearranging we get:

Li � ki

[
1 − Eq [ui(d

∗
i )]

ui(di)

]

which holds for all i ∈ S, giving maxi∈S�ki[1 − Eq [ui(d
∗
i )]

ui(di )
]� as a lower bound on the number

of errors in hτ . This bound decreases in Eq [ui(d
∗
i )] ∀i ∈ S and is lowest when

∑
i∈S d∗

i =∑
i∈S di − δ, Eq [ui(d

∗
i )] < ui(di) ∀i ∈ S. This implies distributions q where one member of S

decreases his demand by δ and each i ∈ S is this one member with some probability ai . So:

Li � ki

[
1 − (1 − ai)ui(di) + aiui(di − δ)

ui(di)

]
= kiai

[
ui(di) − ui(di − δ)

ui(di)

]
=: μi(ai, d)

To find an absolute lower bound this must be minimized over all sets S, that is:

min
S∈I

ai∈(0,1]
max
i∈S

μi(ai, d) s.t.
∑
i∈S

ai = 1

This is minimized for ai chosen so that μi(ai, d) are the same for all i ∈ S: μi(ai, d) =:
μ(d), S is as large as possible: |S| = N − 1, and the player j excluded from S satisfies
j ∈ arg maxi∈I ki[ui(di )−ui(di−δ)

ui (di )
].

As:

kiai

[
ui(di) − ui(di − δ)

ui(di)

]
= μ(d) ∀i ∈ I, i �= j

We have:

1 =
∑
i �=j

ai =
∑
i �=j

μ(d)
1

ki

[
ui(di)

ui(di) − ui(di − δ)

]

which gives:

μ(d) =
(∑

i �=j

1

ki

[
ui(di)

ui(di) − ui(di − δ)

])−1

and:

μ∗(d) = min
j∈I

(∑
i �=j

1

ki

[
ui(di)

ui(di) − ui(di − δ)

])−1

Case 2. (
∑

i∈S d∗
i �

∑
i∈S di).

If ∃i ∈ S with E[d∗
i ] < di then for there to be a lower bound lower than in Case 1 it is necessary

that Eq [d∗
i ] > di − δ. So

Eq

[
ui

(
d∗)] � uτ

i

⇒ aui(di − δ) + (1 − a)

(
1 − Li

ki

)
ui(di) �

(
1 − Li

ki

)
ui(di) for some a ∈ (0,1)

⇒ Li � ki

(
ui(di) − ui(di − δ)

)

ui(di)
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which is still not as low as the bound in Case 1. Now assume d∗
S � dS . Then ∀i ∈ S:

Li

ki

ui

(
v(I )

)
� Eq

[
Ui

(
(d,P )∗S |σ τ

i

)]
� Ui

(
(d, I )S |σ τ

i

)
�

(
1 − Li

ki

)
ui(di)

Rearranging we get:

Li � kiui(di)

ui(v(I )) + ui(di)

For small enough δ this is greater than the lower bound from Case 1. �
Note that coalitional behavior does not decrease the lower bound in Case 2 in the proof of

Lemma 1. The reason is that if one player increases his demand he risks breaking the grand
coalition and thus imposes a negative externality on the other players. In Case 1 above it was
the case that if one player decreased his demand he imposed a positive externality on the other
players (reduced the risk of breaking the grand coalition) who were therefore willing to share
(probabilistically) the costs of taking such action.

The next step is to show that there exists a path from every convention (d, I )m to any other
convention which requires exactly μ∗(d) errors.

Lemma 2. Let d†, d‡ ∈ C∗(v). Then the transition (d†, I )m → (d‡, I )m requires at most
�μ∗(d†)� random errors.

Proof.

Period τ − 2k̄ + 1 to τ : ∀i ∈ I : (dt ,P t )i = (d
†
i , I ). With positive probability:

Period τ + 1 to τ + �μ∗(d†)�: Player e ∈ arg maxi∈I ki[ui (di )−ui(di−δ)
ui (di )

] makes errors and plays

(dt ,P t )e = (d
†
e + δ, I ). ∀i ∈ I \ {e}: σ t

i ⊆ {τ − k̄ + 1, . . . , τ }, (dt ,P t )i = (d
†
i , I ).

Period τ + �μ∗(d†)� + 1 to τ + k̄: ∀i ∈ I : σ t
i ⊆ {τ − k̄ + 1, . . . , τ }, (dt ,P t )i = (d

†
i , I ).

Period τ + k̄ + 1 to τ + 2k̄: ρt = {I \ {e}, {e}}. σ t
e ⊆ {τ + 1, . . . , τ + k̄}, (dt ,P t )e = (d

†
e , I ).

I \e respond as in Lemma 1. Assume that j always turns out to be the player who reduces his
demand by δ. ∀i ∈ I \{e}: σ t

i ⊇ {τ +1, . . . , τ +�μ∗(d†)�}. For some j ∈ I \{e}: (dt ,P t )j =
(d

†
j − δ, I ). ∀i ∈ I \ {e, j}: (dt ,P t )i = (d

†
i , I ).

Period τ + 2k̄ + 1 to τ + 3k̄: ρt = {{1}, . . . , {N}}. ∀i ∈ I : σ t
i ⊆ {τ + k̄ + 1, . . . , τ + 2k̄}.

(dt ,P t )j = (d
†
j , I ). ∀i ∈ I \ {j}: (dt ,P t )i = (d

†
i + δ, I ). Note that dt � d†, d† ∈ C∗(v)

⇒ Ui((d
t ,P t )) = 0 ∀i.

Period τ + 3k̄ + 1 to τ + 4k̄: ρt = {I }. ∀i ∈ I : σ t
i ⊆ {τ + 2k̄ + 1, . . . , τ + 3k̄}. (dt ,P t )i =

(d
‡
i , I ).

Period τ + 4k̄ + 1 to τ + 3k̄ + m: ∀i ∈ I : σ t
i ⊆ {t − k̄, . . . , t − 1}. (dt ,P t )i = (d

‡
i , I ). So

hτ+3k̄+m = (d
‡
i , I )m. �

For a convention ω̂ with demands d̂ , define β(d̂) as the lowest number of random errors
necessary to move the process to any other convention ω �= ω̂. Lemmas 1 and 2 have shown
that for any d̂ there exists a δ̂ such that for all δ < δ̂: β(d̂) = μ∗(d̂). We now show that for any
allocation d which does not maximize μ∗(.) we can find δ small enough so that d is not stable.
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Lemma 3. Let d†, d‡ ∈ C∗(v). If β(d†) = μ∗(d†), then μ∗(d†) > μ∗(d‡) implies that d‡ is not
a stochastically stable allocation.

Proof. Note that for large m, μ∗(d†) > μ∗(d‡) ⇒ �μ∗(d†)� > �μ∗(d‡)�. Define a graph on
C∗(v). Directed edges between any two vertices of the graph are given a cost equal to the min-
imum number of random errors required to move from one vertex (state) to the other in the
perturbed dynamic. [7] shows that any stochastically stable state is the root of a spanning tree of
the graph which has minimum cost, where the cost of the tree is given by the sum of the costs of
its edges. Take any spanning tree rooted at d‡. Replace the edge of the tree leaving d† with an
edge from d† to d‡. By Lemma 2 the new tree will have the same cost. Reversing the direction
of the edge between d† and d‡ we obtain a tree rooted at d† with lower cost.

Cost
(
d†) � Cost

(
d‡) − ⌈

μ∗(d†)⌉ + ⌈
μ∗(d‡)⌉ < Cost

(
d‡)

so d‡ cannot be stochastically stable. �
We now show what happens to the results of the previous lemmas when δ gets very small.

Stochastically stable allocations are characterized as minima of a function and uniqueness is
shown under a condition on the utility functions. This completes the proof of Theorem 2.

Proof of Theorem 2. Define:

ξ(d, δ) := μ∗(d)

mδ

As:

lim
δ→0

αi

δ

[
ui(di) − ui(di − δ)

ui(di)

]
= αi

∂ logui(di)

∂di

We have:

lim
δ→0

ξ(d, δ) = lim
δ→0

μ∗(d)

mδ
= lim

δ→0
min
j∈I

(∑
i �=j

δ

αi

[
ui(di)

ui(di) − ui(di − δ)

])−1

= min
j∈I

(∑
i �=j

(
αi

∂ logui(di)

∂di

)−1)−1

=: η(d)

We will show that if an allocation d ∈ C(v) is the limit of a sequence of stochastically stable
allocations as δ → 0, then d must maximize η(d) over the domain of core allocations. The
proof is by contradiction. Let d∗ be a limit of a sequence of stochastically stable allocations as
δ → 0. If d∗ does not maximize η(d) then there must exist d̃ ∈ C(v) such that η(d̃) > η(d∗).
Let di∗, δi , i = 1, . . . ,∞, be a sequence of stochastically stable allocations converging to d∗ and
their corresponding values of δ. Choose d̂ ∈ C∗(v) close to d̃ so that η(d∗) < η(d̂) and let d̂ i , δi ,
i = 1, . . . ,∞, be a sequence of allocations converging to d̂ , corresponding to the same δi as in
the previous sequence.

ξ
(
di∗, δi

) → η
(
d∗) and ξ

(
d̂ i , δi

) → η(d̂)

⇒ ∃N1 such that ∀i � N1: ξ
(
d̂ i , δi

)
> ξ

(
di∗, δi

)
Now by Lemma 1:
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∃δ̂ such that ∀δ < δ̂: β(d̂) = μ∗(d̂)

As d̂ > 0 and the bounds in Lemma 1 are continuous in d :

∃ ˆ̂
δ, ε > 0 such that ∀δ <

ˆ̂
δ: ‖d − d̂‖ � ε ⇒ β(d) = μ∗(d)

Take one such ˆ̂
δ, ε pair and let N2 = inf{i: δi <

ˆ̂
δ, ‖d̂ i − d̂‖ � ε}. Let N = max{N1,N2}. Then

∀i > N :

μ∗(d̂ i
)
> μ∗(di∗) and β

(
d̂ i

) = μ∗(d̂ i
)

which implies di∗ is not stochastically stable by Lemma 3. Contradiction.
So if d∗ is the limit of a sequence of stochastically stable allocations as δ → 0, then d∗ solves:

max
d∈C(v)

η(d) = max
d∈C(v)

min
j∈I

(∑
i �=j

(
αi

∂ logui(di)

∂di

)−1)−1

= max
d∈C(v)

(
max
j∈I

∑
i �=j

(
αi

∂ logui(di)

∂di

)−1)−1

So d∗ must solve:

min
d∈C(v)

max
j∈I

∑
i �=j

(
αi

∂ logui(di)

∂di

)−1

Now: (
∂ logui(di)

∂di

)−1

= ui(di)

(
∂ui(di)

∂di

)−1

= ui(di)

u′
i (di)

So if ui(di )

u′
i (di )

is strictly convex then as a weighted sum of strictly convex functions:

∑
i �=j

1

αi

(
∂ logui(di)

∂di

)−1

is strictly convex ∀j and:

max
j∈I

∑
i �=j

1

αi

(
∂ logui(di)

∂di

)−1

being the maximum of strictly convex functions is also strictly convex. It follows that our min-
imization problem, being one of minimizing a strictly convex function over a convex set, has a
unique solution. �
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