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Abstract

This study considers waiting times for populations to achieve efficient social coordination. Belloc and 
Bowles [1] conjecture that coalitional behavior will hasten such coordination. This turns out to be true 
when every member of the population interacts with every other member, but does not extend to more 
complex networks of interaction. Although it is in the interest of every player to coordinate on a single 
globally efficient norm, coalitional behavior at a local level can greatly slow, as well as hasten, convergence 
to efficiency.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

A pervasive criticism of stochastic stability as a tool of equilibrium selection has been the 
large lengths of time it can take for perturbed adaptive processes to reach stochastically stable 
states (Young [25], Kandori and Mailath [9], Ellison [4]). There has been extensive study of such 
waiting times for coordination games when interaction is governed by a network. Results have 
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A α,α 0,0

B 0,0 1,1

Fig. 1. A two player coordination game, α > 1.

been found to depend on network topology, network size, and whether the small error probability 
limit is analyzed or error probabilities are kept fixed (Ellison [5], Young [26,27], Montanari and 
Saberi [13], Kreindler and Young [11]).

This paper examines the effect of coalitional behavior on expected waiting times for pro-
cesses to reach stochastically stable states. We focus on two action coordination games with one 
efficient action A, and one inefficient action B , as illustrated in Fig. 1. The relative efficiency 
of the efficient action to the inefficient action is given by the parameter α. The set of players 
with whom any given player interacts is governed by an underlying network. A stochastically 
stable state is the state in which every player plays the efficient action (Peski [21]). The wait-
ing time for the process to reach this state can thus be understood as the delay before a society 
converges to an efficient social norm. In line with the theoretical predictions of Olson [20] and 
much of the subsequent literature on collective action, we are particularly interested in the ef-
fect of joint strategic switching by coalitions which are small relative to the total population 
size.2

Two possible effects of coalitional behavior are discovered, a reforming effect and a conser-
vative effect. For any network and high values of α, we observe a reforming effect: convergence 
to the long run equilibrium is much faster when coalitional behavior is allowed. Less obviously, 
for some networks and low values of α, there is a conservative effect: convergence to the long run 
equilibrium is much slower in the presence of coalitional behavior. These effects, taken singly 
or together, imply that coalitional behavior increases the sensitivity of convergence speeds to the 
relative efficiency of competing norms. Several network types display tipping point effects. For 
values of α below some threshold α, coalitional behavior has a conservative effect. For values of 
α above some threshold ᾱ, coalitional behavior has a reforming effect. In some instances α and 
ᾱ take the same value. The principal results of the analysis are as follows:

(i) For any network, a reforming effect is observed for large enough α. Furthermore, for any α, 
a reforming effect is observed if large enough coalitions can form.

(ii) For some networks and coalition sizes, a conservative effect is observed for small enough α.
(iii) The notion of a parochial set of players is defined recursively, building outwards from some 

core players who are completely isolated from the network outside of the parochial set. It is 
shown that parochial sets of players are the only sets which are immune to conservative 
effects for any α and coalition size.

(iv) If all Nash equilibria for a network involve every player choosing the same action, then 
there cannot be a conservative effect for any α and coalition size. This set of networks 
includes the ring network and the complete network. This confirms the hypothesis of Belloc 
and Bowles [1] that coalitional behavior will speed convergence to efficient social norms in 
population games, which are equivalent to interaction on the complete network.

2 See also Poteete and Ostrom [22]. There also exist important provisos to such predictions (Chamberlin [2]), particu-
larly in the presence of punishment (Mathew and Boyd [12], Hwang [7]).
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(v) We characterize sets of players which are immune to ‘contagion’ (in the sense of Mor-
ris [14]) by the efficient action. In the absence of coalitional behavior, Morris [14] gives an 
external stability condition: such a set of players must be sufficiently insular. In the presence 
of coalitional behavior, there is also an internal stability condition: the set must not contain 
small groups of players which are insular enough to profitably coordinate a switch to the 
efficient action.

The paper contributes to the small but growing literature on coalitional behavior in perturbed 
evolutionary models. Newton [16] introduces a model of coalitional stochastic stability in which 
the ‘errors’ in the dynamic process are actually small probabilities of payoff improving behavior 
by coalitions of players. Sawa [23] adapts coalitional stochastic stability for logit-style dynamics. 
The model of Sawa [23] also features coalitional behavior as part of the unperturbed dynamic. 
Serrano and Volij [24] and Newton [17] do similarly, applying stochastic stability to models of 
coalitional recontracting. Matching models such as those found in Jackson and Watts [8], Klaus, 
Klijn and Walzl [10] and Newton and Sawa [19], in which coalitions are pairs of recontracting 
agents, also fall into this category.

The paper is organized as follows. Section 2 gives the model. Section 3 introduces the ideas 
of the paper via an example. Section 4 gives some general results for the unperturbed process. 
Section 5 studies conservative effects. Section 6 concludes. All proofs not in the main body of 
the text are given in Appendix A.

2. Model

Let N be a finite set of players. Players are arranged in a network, which we represent as a 
graph g, where gij = 1 if there exists an edge between players i and j , and gij = 0 otherwise. 
We assume that the graph is undirected: gij = gji . Set gii = 0 for all i ∈ N . The network will 
affect players in two ways:

(i) The network determines the structure of payoffs, in particular which players’ actions impose 
externalities on other players.

(ii) The network mediates joint action by coalitions of players.

Let xt
i ∈ {A, B} denote player i’s action at time t . Let xt

S = (xt
i )i∈S denote the action profile 

of all players in S ⊆ N at time t . In the absence of a subscript, xt := xt
N . Let xi and xS denote 

representative actions and action profiles respectively. Let Ni denote the set of neighbors of 
player i: Ni = {j ∈ N : gij = 1}. For S ⊆ N , let NS = (

⋃
i∈S Ni) \ S. Payoffs of player i in 

period t are given by:

ui

(
xt

) =
∑
j∈Ni

δ
(
xt
i , x

t
j

)
where:

δ(A,A) = α > 1; δ(A,B) = δ(B,A) = 0; δ(B,B) = 1.

That is, the players play a coordination game on the network. If a player chooses action B , his 
payoff is the number of his neighbors who play action B . If a player chooses action A, his payoff 
is the number of his neighbors who play action A multiplied by some constant α which is strictly 
greater than 1. Effectively, the players play their chosen action against each of their neighbors 
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in the game in Fig. 1. The model can be understood as a threshold model, with 1/(α+1) being the 
proportion of a player’s neighbors who must play A for the player to want to play A.3

The underlying dynamic process of this paper is one in which coalitions of players adjust 
their actions in a coordinated manner. The sets of players which can do this are determined by 
the underlying network.

Definition 1. A coalition of players S ⊆ N is feasible in g, denoted S|g if and only if for all 
i, j ∈ S there exists {sm}m=l

m=1 such that s1 = i, sl = j , and sm ∈ S, gsmsm+1 = 1 for m < l.

That is, S is a feasible coalition if and only if S is a singleton set or there is a path between 
any two players in S that only uses edges between players in S. That is, players in a feasible 
coalition either directly interact with one another, or have interactions mediated by other players 
in the coalition. Another way of stating this is that the network restricted to players in S forms a 
connected subgraph. It is assumed that N is a feasible coalition: g is a connected network. This is 
without loss of generality: if the network comprised more than one component, analysis of each 
component would proceed independently of the other components.

When a coalition chooses its actions, we mandate that it chooses a better response. That is, 
players in the coalition adjust their actions in a coordinated manner such that no member of the 
coalition loses from the adjustment. Define the set of better responses for a set of players S:

AS

(
xt

) := {
xS : ui

(
xS, xt

N\S
) ≥ ui

(
xt

) ∀i ∈ S
}
.

Let GAS(xt )(.) be a probability distribution over AS(xt ). GAS(xt )(.) will determine the actions 
chosen by a coalition S when it is called upon to better respond. We assume full support on the 
set of better responses.

Assumption 1. Each GAS(xt )(.) has full support on AS(xt ).

We are particularly interested in the effect of coalitional behavior by coalitions which are small 
relative to the total size of the population. It is natural to assume that there are limits to how 
large a coalition can be. Such a limit could be a consequence of higher costs of communication 
for larger coalitions. The approach taken here is to limit the maximum number of players in a 
coalition. Let N (k) be the set of feasible coalitions of size k or smaller:

N (k) = {
S ⊆ N : (S|g and |S| ≤ k

)}
.

For given k, let Fk(.) be a distribution on N (k). Fk(.) will determine which coalition gets the op-
portunity to update its actions in any given period. The process is one of asynchronous updating: 
only one coalition at a time updates its actions.

Assumption 2. Fk(.) has full support on N (k).

The process of strategy updating is constructed as follows. Each period, a coalition S is chosen 
according to Fk(.). The coalition decides on an intended new action profile for its members. 
Denote this intended action profile by yt+1

S . This profile is chosen from the set of better responses 
AS(xt ):

3 Action A is p-dominant for any p > 1/(α+1) under the definition of Morris et al. [15].
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yt+1
S ∼ GAS(xt )(.).

Following the decision on which actions to take, each player will play his intended action. This 
is the unperturbed dynamic. A perturbed dynamic is generated by considering the possibility that 
a player makes a mistake when attempting to play the action he intends to play. Each player in 
the coalition, independently of the other players, with a small probability ε makes an error and 
chooses an action at random. That is, independently for each i ∈ S:

With probability 1 − ε : xt+1
i = yt+1

i

With probability ε : xt+1
i ∼ U

[{A,B}].
Finally, all players who are not part of the chosen coalition for period t do not update their 
actions. For all i ∈ N \ S:

xt+1
i = xt

i

So the change in the action profile is determined by a Markov process, Φk,α,ε, on state space 
X := {A, B}|N |, with transition probabilities Pk,α,ε(., .) derived from the above description of 
the process. Let P t

k,α,ε(., .) denote the t -step Markov transition probabilities. Each period, this 
process involves feasible coalitions of players changing their strategies in a payoff improving 
manner. When choosing his strategy, each player in the coalition independently makes an error 
with probability ε and chooses an action at random.4 The process with ε = 0 corresponds to an 
unperturbed dynamic in which players do not make errors.

Note that for ε > 0, Φk,α,ε is irreducible and aperiodic and therefore has a unique invariant 
measure πk,α,ε which is ergodic. Denote the expected time for the process Φk,α,ε to reach state 
y starting from x by Wk,α,ε(x, y).

Definition 2.

τy = min
{
t ≥ 0 : Φt

k,α,ε = y
}; Wk,α,ε(x, y) = E

[
τy

∣∣Φ0
k,α,ε = x

]
The focus of the paper is on Wk,α,ε(B

|N |, A|N |), the expected time for the process to move from 
an inefficient social norm in which every player plays B to an efficient social norm in which 
every player plays A. We shall occasionally be interested in the set of stable states: absorbing 
states under the process with ε = 0. Denote this set Λk,α .

Λk,α := {
x ∈ X : Pk,α,0(x, x) = 1

}
For expositional brevity, we avoid the existence of absorbing cycles under the process with ε = 0
by making the following assumption which holds for generic α.

Assumption 3. ∀z ∈N+, z ≤ maxi∈N |Ni |, αz /∈N+.

4 This describes errors in implementation. If errors were instead made in the process by which a coalition chooses
its actions, then errors within a coalition could be perfectly correlated and different results would obtain. However, 
remarkably, even if a probability ε event leads all the members of a coalition to make mistakes, conservative effects are 
still possible. Some correlation between errors in the process is also fine: the results of the paper can be appropriately 
restated. See Newton and Angus [18] for examples.
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Fig. 2. Square lattice in various states. Black vertices play B , red vertices play A. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

Throughout the paper, for functions f (ε), g(ε), the notation f (ε) ∈ O(g(ε)) denotes that 
f (ε) is asymptotically (as ε → 0) bounded above by some multiple of g(ε). f (ε) ∈ Θ(g(ε))

denotes that f (ε) ∈ O(g(ε)) and that f (ε) is also bounded below by some multiple of g(ε).

3. Coalitional effects on the square lattice

Consider the square lattice with von Neumann neighborhoods (each player neighbors other 
players at unit distance under the taxicab metric), pictured in Fig. 2.

Consider the benchmark case without coalitional behavior, k = 1, α < 3. We have that 
W1,α,ε(B

|N |, A|N |) ∈ Θ(ε−2). To see this, consider that two errors (Fig. 2(ii)) are necessary to 
move to a state C2 (Fig. 2(iii)) in which a block of four players play A and every other player 
plays B . From C2, it takes a single error to move to a state such as C3 (Fig. 2(iv)) in which 
a larger block of players plays A. However, at least one error is required to move backwards 
from C2 to B |N |. That is, the probability of moving to a state in which a larger block of players 
plays A conditional on leaving C2 is of order 1. This means that the waiting time until A|N | is 
reached involves the wait for the initial two errors of order ε−2, followed by subsequent waits of 
order ε−1. These terms combine additively and so the wait for the initial two errors dominates as 
ε becomes small.

The preceding argument is a slight adaptation of Ellison [5]. When k = 1 and α < 3, due to 
C2 being an absorbing state of the process with ε = 0, the probability of transiting to C3 is of 
the same order of magnitude as the probability of returning to B |N |. Put differently, once C2 is 
reached, the expected time spent there is of order ε−1, and over that length of time, a transition 
to C3 is not a rare event. Contrast this with a situation in which an ε2 event and an ε event have 
to occur relatively close together in time. This is equivalent to a single ε3 event having to occur, 
the expected waiting time for which is Θ(ε−3).

Now consider k = 4, coalitions including up to four players can form. First, consider the 
case α < 3/2; the relative benefits of the better technology are not so great. Errors are no longer 
required to leave C2. If two adjacent A players form a coalition, they can gain by switching to 
B and achieving a payoff of 3, which is higher than the payoff of 2α they attain in state C2. 
In the absence of random errors, C2 collapses and the process returns to B |N |. More than two 
errors are required to exit the basin of attraction of B |N |. Following three errors on a diagonal, 
the process can attain the state C3 which has a 3 by 3 block of players playing A. This block 
of players playing A can expand with the aid of a single error. It is not possible to leave C3
without the help of errors, no matter how close α is to 1: the players who play A in C3 form what 
will later be formally defined as a parochial set. To see that errors are required to leave C3, first 
consider the player in the center of the square. He attains his maximum possible payoff of 4α, so 
he will not intentionally change his action as part of a coalition or otherwise. Secondly, consider 
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the neighbors of the central player. Their payoffs at C3 are 3α, so they will never intentionally 
change their action unless the central player also changes his, which he will not. The players at 
the corners of the block of A players cannot earn more than their C3 payoff of 2α unless some 
non-corner player in the square changes his action, which will not occur. Similar arguments to 
those in the case k = 1 lead us to conclude that W4,α,ε(B

|N |, A|N |) ∈ Θ(ε−3). Convergence to 
the efficient social norm is an order of magnitude slower in the presence of coalitional behavior: 
small outbreaks of innovation are snuffed out as the players involved in the outbreak collaborate 
to recoordinate with the population as a whole. The possibility of coalitional behavior has led to 
a conservative effect.

Now, consider the case 3/2 ≤ α < 2, k = 4. From state C2, pairs of players who play strategy B
in C2, and who each have a neighbor playing A, can switch together to playing A and attaining a 
payoff of 2α which is greater than their payoff of 3 in C2. In this way, the set of players playing A
can expand without errors. This speeds up the process of moving to the efficient norm. However, 
to reach C2 the initial two errors are still necessary so the order of magnitude of the wait is the 
same as that for the case without coalitional behavior, W4,α,ε(B

|N |, A|N |) ∈ Θ(ε−2).
Finally, consider the case 2 ≤ α, k = 4. From state B |N |, a square of 4 players can form a 

coalition. By switching to playing A, thus reaching state C2, they can attain a payoff of 2α which 
is greater than their payoff at B |N | of 4. This can happen for any such set of players on the grid.5

Therefore, the process can move to A|N | without the aid of any errors. W4,α,ε(B
|N |, A|N |) ∈

Θ(1). Convergence to the efficient social norm is orders of magnitude faster in the presence 
of coalitional behavior: coalitions coordinate innovation in the population. The possibility of 
coalitional behavior has led to a reforming effect.

The reasoning of the preceding three paragraphs leads to the following proposition.

Proposition 1. Let g be the n1 by n2, n1n2 = |N |, square lattice on a torus with von Neumann 
neighborhoods, 4 ≤ k 
 n1, n2. Then, as ε → 0,

α <
3

2
�⇒ Wk,α,ε(B

|N |,A|N |)
W1,α,ε(B |N |,A|N |)

→ ∞

3

2
≤ α < 2 �⇒ Wk,α,ε(B

|N |,A|N |)
W1,α,ε(B |N |,A|N |)

∈ Θ(1)

2 ≤ α �⇒ Wk,α,ε(B
|N |,A|N |)

W1,α,ε(B |N |,A|N |)
→ 0

Proposition 1 tells us that coalitional behavior can have either a conservative or a reforming
effect. For low values of α, it has a conservative effect: when small groups of players start to play 
A and form a configuration which is stable under an individual best response dynamic, coalitions 
of players tear apart the cluster of deviant behavior, taking the process back to the state in which 
B is played by all. For large values of α, coalitional behavior has a reforming effect: groups 
of players can coordinate their choice to play A, increasing their payoffs from the change by 

5 Note that although the underlying game is a potential game with a potential function given by the sum of the payoffs 
of all the players, local maxima of the potential function are not necessarily absorbing states of the unperturbed dynamic 
when k > 1. For α < 3, B|N | is a local maximum of the potential function. The move from B|N | to C2 changes the 
potential by 8α − 24, which is negative for α < 3, and yet the move from B|N | to C2 occurs under the unperturbed 
dynamic for k = 4 and α ≥ 2.
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ensuring that it occurs simultaneously to that of their neighbors. This speeds up the process of 
convergence to the efficient social norm.6

Note that Wk,α,ε(B
|N |, A|N |) is not necessarily monotonic in k. If k = |N |, there is the pos-

sibility of the coalition S = N being chosen to respond, and the players in N choosing to play 
A|N | in a single step without the aid of any errors. Convergence is fast and the formation of the 
grand coalition has a reforming effect.

The question arises as to how far the results of the preceding paragraphs can be extended 
to general network architectures. The answer is sometimes unambiguously positive and some-
times not. It is simple to show that there always exists a reforming effect for large enough α or 
for k = |N | (see Newton and Angus [18] for details). Conservative effects are more nuanced. 
To analyze them, we first need some definitions pertaining to the process with ε = 0.

4. Deterministic contagion

The basin of attraction of a stable state x ∈ Λk,α is the set of states from which, in the absence 
of errors, convergence to x is guaranteed. The basin of possible attraction is the set of states from 
which, in the absence of errors, convergence to x is possible. Allowing coalitions of a greater 
size reduces the set of stable states. This is equivalent to the fact that for any game, the set of 
(k + 1)-strong Nash equilibria is a subset of the set of k-strong Nash equilibria. Furthermore, 
an expansion of the set of allowable coalitions also (weakly) expands the basins of possible 
attraction of stable states, as any path which was possible with a lower k, is also possible with a 
higher k. No such monotonicity exists for basins of attraction.7

Definition 3. The basin of attraction of x ∈ Λk,α is defined as:

Dk,α(x) = {
y ∈ X : P t

k,α,0(y, x) → 1 as t → ∞}
Definition 4. The basin of possible attraction of x ∈ Λk,α is defined as:

D̄k,α(x) =
{

y ∈ X :
∞∑
t=1

P t
k,α,0(y, x) > 0

}

Proposition 2. Assume k1 ≤ k2. Then Λk1,α ⊇ Λk2,α . Moreover, x ∈ Λk2,α implies that 
D̄k1,α(x) ⊆ D̄k2,α(x).

As an interesting point of comparison with the conservative effects observed in our setup, 
we can consider the effect of coalitional behavior on deterministic ‘contagion’ in the style of 

6 Montanari and Saberi [13] would consider all of these parameter specifications to give fast convergence as the order 
of magnitude of the waiting time does not increase in population size. Given that period length is undefined, for fixed 
small ε this could encompass massive differences in actual waiting times (see simulations in Newton and Angus [18]). 
The focus of the current paper is not whether convergence is ‘fast’ or ‘slow’ as such, but on the effects of coalitional 
behavior relative to the baseline process without coalitional behavior.

7 By increasing the size of basins of possible attraction, an increase in k will decrease the size of basins of attraction, 
as long as the set of stable states remains the same. If the set of stable states changes, this is no longer the case. Consider 
the example of Section 3 with α < 3/2. C2 /∈ D1,α(B|N |), but for k = 4, C2 is no longer stable and C2 ∈ D4,α(B|N |).
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Morris [14]. For any k, we characterize the set of states from which the spread of A across the 
entire population under the unperturbed (ε = 0) dynamic can occur.8

Proposition 3. For any x ∈ X, x ∈ D̄k,α(A|N |) if and only if there does not exist S ⊆ {i ∈ N :
xi = B} such that:

∀T ⊆ S, |T | ≤ k,∃i ∈ T : |Ni \ S| + |Ni ∩ T |
|Ni | + |Ni ∩ T | <

1

1 + α

That is, contagion cannot occur if there exists a set of players which (i) is insular enough to pro-
tect it from being ‘infected’ by A by the rest of the population but (ii) does not contain subsets 
of players which are themselves insular enough to coordinate their switch to A. When k = 1, 
T must be a singleton, so Ni ∩ T is empty and we have, in essence, the result of Morris [14]. 
The proof, however, is more similar to that of Easley and Kleinberg [3]. Note that Proposition 2
implies that the larger is k, the larger is the basin of possible attraction of A|N |, from which con-
tagion can occur. However, the size of the basin of possible attraction is only part of the story, and 
we have already seen in Section 3 that although larger k increases the size of D̄k,α(A|N |), it can 
also increase the waiting time until it is reached. To emphasize: increasing k has a monotonic 
effect on deterministic contagion in the style of Morris [14]. As we have seen in Section 3, it can 
have a non-monotonic effect on the contagion of the current model.

5. Conservative effects

As noted at the end of Section 3, a reforming effect of coalitional behavior is always possible 
for large enough values of α. Is a conservative effect similarly always possible? The answer is no, 
as can be seen if we consider ring networks. In such a network the vertices are arranged in a circle 
and each vertex is connected to m neighbors on either side. For k = 1, the only absorbing states of 
the unperturbed dynamic are A|N | and B |N |. No intermediate stable states exist for any m, α. The 
only possible effect of coalitional behavior is then to speed the transition. This is a general result 
in the absence of intermediate equilibria. From any state, without random errors, the process will 
converge to either A|N | or B |N |. Any number of errors that is enough to move the process into 
the basin of possible attraction of A|N | when k = 1 is also enough to move the process into the 
basin of possible attraction of A|N | when k > 1.

Proposition 4. If for k = 1, Λk,α = {A|N |, B |N |}, then for any k ≥ 1,

Wk,α,ε(B
|N |,A|N |)

W1,α,ε(B |N |,A|N |)
∈ O(1)

So, rings and square lattices give very different results when it comes to predicting the im-
pact of coalitional behavior on adaptive dynamics. This is important as each is a commonly used 
model of local interaction. Another important network that satisfies the conditions of Proposi-
tion 4 is the complete network, in which every player neighbors every other player. The complete 
network and the ring are very different networks: in the class of connected networks with |N |

8 Morris [14] pays specific attention to countably infinite populations for which the basin of possible attraction contains 
states in which a finite number of players play A.
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vertices, the complete network has the greatest number of edges ( |N |(|N |−1)
2 ); the ring with m = 1

has |N | edges, one more than the lowest possible number.
Now we turn our attention to a method for showing the existence of a conservative effect for 

small enough α. This requires us to define the notion of a parochial set of players.

Definition 5. For S ⊆ N , define:

I0(S) = {i ∈ S : Ni ⊆ S},
Im(S) = {

i ∈ S : |Ni \ S| ≤ ∣∣Ni ∩ Im−1(S)
∣∣}, m ≥ 1.

Note that Im−1(S) ⊆ Im(S). We say that S is parochial if there exists m ≥ 0 such that S = Im(S).

Note that the definition of a parochial set does not depend on the value of α. A parochial set, S, 
always contains a set of players, I0(S), who are completely isolated from the network outside 
of S. I1(S) is then formed from all of the players in S who have at least as much exposure to 
I0(S) as they have to the network outside of S. I2(S) is similarly defined, and so on. Intuitively, 
the recursive definition means that every member of a parochial set has at least as many neighbors 
who are more deeply embedded in the set than he is, than he has neighbors outside of the set. 
Every member of a parochial set will have at least half of his neighbors within the set, but this 
fact alone does not suffice to make a set parochial. In fact, any set of players, S, in which every 
player has at least one neighbor outside of the set cannot be parochial, as I0(S) will be empty.

Define PA as the set of states such that the set of players playing A contains a parochial subset.

Definition 6.

PA = {
x ∈ X : ∃S ⊆ {i ∈ N : xi = A} such that S is parochial

}
.

If S is the set of players playing A and S is not parochial then there exist nonempty sets of A
players who are not in Im(S) for any m, and who, for some k and α, can gain by coordinating a 
switch back to B . Iterating, the process can return to either B |N |, or a state in which the set of 
players playing A is a parochial set. Conversely, if some parochial set of players is playing A, 
then for any values of k and α, no member of the set will ever switch to B unless at least one 
member of the set makes an error. The reason for this is that when a parochial set S is playing A, 
any player in I0(S) is earning his maximum possible payoff and so will not participate in any 
coalitional deviation. Now, fixing players in I0(S) to play A, there is no way that any player in 
I1(S) can switch to B and earn a payoff at least as high as his current payoff, regardless of the 
actions of other players outside of I0(S). Iterating this logic, no player in S will participate in a 
coalitional deviation to play B .

Proposition 5. x ∈PA if and only if �k, α such that x ∈ D̄k,α(B |N |).

So, for every x /∈PA, there exist kx and αx such that x ∈ D̄kx,αx (B
|N |). D̄k,α(B |N |) is monotonic 

in k and α, so choosing k∗ to equal the largest kx and α∗ to equal the smallest αx , we have that 
x /∈ PA implies x ∈ D̄k∗,α∗(B |N |). As the process is time homogeneous and has a finite state 
space, Φk∗,α∗,0 will either enter PA or reach state B |N |. That is, any intermediate stable state 
must be in PA. This bounds the waiting time to reach A|N | from below by the waiting time to 
reach PA. That is, the waiting time to reach A|N | is at least of the order of ε to the power of the 
number of errors required to reach a state in which some parochial subset of players play A.
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Fig. 3. Interconnected cliques.

The use of this result can be seen in that for the square lattice, state C3 is in the set PA. 
Moreover, C3 is among the elements of PA which require the fewest errors to attain. For α close 
to 1, three errors are required to reach C3 from B |N |. From the above discussion, we know we 
can choose k = k∗ (in this case, k = 4 suffices) such that there are no intermediate stable states 
outside of PA. So, the waiting time to reach A|N | is at least of the order of the waiting time 
to reach PA, that is Θ(ε−3). As the waiting time to reach A|N | without coalitional behavior is 
O(ε−2), this implies the existence of a conservative effect.

The same cannot be said for the regular network of connected cliques (Fig. 3), which illus-
trates that the failure of the condition in Proposition 4, that is to say the existence of intermediate 
stable states when k = 1, is necessary but not sufficient for the existence of a conservative effect. 
Assume α is close to 1. Consider k = 4. Although it is true that Cli2 ∈ Λ1,α and Cli2 /∈ Λk=4,α , 
there is no conservative effect. The reason for this is that when k = 1, two errors are required 
to reach Cli2. When k = 4, only a single error in which a player plays A is required, following 
which the three other members of the clique can better respond by switching to A. However, as 
Cli2 /∈ Λk=4,α , we have still not reached an intermediate stable state. We require one further error 
(making a total of two) to move the process to Cli3 ∈PA. From Cli3, the process can expand via 
single error driven steps between states in Λk=4,α until A|N | is reached. Therefore the waiting 
time for k = 1 and k = 4 is Θ(ε−2).

6. Conclusion

In settings in which every member of a population has a common interest in coordinating on 
a given efficient action, it might be expected that overt cooperation by coalitions of players in 
their choice of action would facilitate the spread of that action in the population. This paper has 
shown that this is not always the case and that there can also exist conservative effects by which 
coalitions slow the spread of efficient behavior in a population. Further examples, results for 
specific networks, and simulations illustrating the breadth and importance of these phenomena 
can be found in Newton and Angus [18]. Implications for the study of social dynamics and 
network design clearly exist and merit subsequent study.
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Appendix A. Proofs

We use the concepts of and similar notation to Ellison [5].9 For x, y ∈ X, define the resistance 
r(x, y) so that the most probable transition from x to y occurs with probability of order εr(x,y).

r(x, y) = min

{
r ∈ R+ : lim

ε→0

Pk,α,ε(x, y)

εr
> 0

}
∧ ∞.

For Y ⊆ X, let S(x, Y) be the set of all paths (sequences of distinct states) {x1, . . . , xT } such that 
x1 = x, xT ∈ Y , r(xt , xt+1) < ∞ for t = 1, . . . , T − 1. Define

r
(
x1, . . . , xT

) =
t=T −1∑

t=1

r
(
xt , xt+1); r(x,Y ) = min

{xt }Tt=1∈S(x,Y )

r
(
x1, . . . xT

)
.

Then, the radius of x ∈ Λk,α is

R(x) = r
(
x,X \ Dk,α(x)

)
.

The radius is the resistance of the lowest resistance path from x to outside the basin of attraction 
of x. For x /∈ Λk,α , set R(x) = 0. For a path {x1, . . . , xT }, let {x̄1, . . . , x̄τ } be the sequence of 
states in Λk,α through which the path passes consecutively. Define modified resistance10:

r∗(x1, . . . , xT
) = r

(
x1, . . . , xT

) −
t=τ−1∑
t=2

R
(
x̄t

)
and

r∗(x,Y ) = min
{xt }Tt=1∈S(x,Y )

r∗(x1, . . . xT
)
.

Finally, define the modified coradius of y ∈ Λk,α as

CR∗(y) = max
x �=y

r∗(x, {y}).
For purposes of comparison, these quantities will sometimes be given subscripts k, α.

Proof of Proposition 1. For k = 1, α ≥ 3, a single error (and no fewer) is enough to move the 
process to A|N |. For α < 3, two errors move the process to C2. No fewer than two errors suffice 
to move the process out of Dk,α(B |N |). From C2, a single error then suffices to move the process 
to C3, and so on. Noting that from any state not equal to B |N |, a single error is enough to give an 
expanding set of squares, and that R1,α(Ci) = 1, we have

α < 3 �⇒ CR∗
1,α

(
A|N |) = 2; α ≥ 3 �⇒ CR∗

1,α

(
A|N |) = 1.

9 Ellison [5] cites a no longer extant working paper of Evans as containing the first statements and use of some of these 
concepts.
10 The reason that modified resistances and associated quantities are useful is that when using spanning tree arguments 
as found in Freidlin and Wentzell [6], when edges are added to an existing tree, other edges must be deleted for the graph 
to remain a tree. Theorems using radii and coradii to give sufficient conditions for stochastic stability follow trivially 
from this observation.
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For 4 ≤ k 
 n1, n2, for α < 3/2, two errors do not suffice to leave Dk,α(B |N |). Three errors, 
however, can take the process to C3, from where a single error can take the process to C4 and 
so on. Note that Rk,α(Ci) = 1 for i ≥ 3. For 3/2 ≤ α < 2, two errors are required to move to 
C2 ∈ D̄k,α(A|N |). For α ≥ 2, B |N | ∈ Dk,α(A|N |). We have

α < 3
/

2 �⇒ CR∗
k,α

(
A|N |) = 3; α ≥ 2 �⇒ CR∗

k,α

(
A|N |) = 0;

3
/

2 ≤ α < 2 �⇒ CR∗
k,α

(
A|N |) = 2.

Note that in all of the above cases, CR∗
k,α(A|N |) = Rk,α(B |N |). The value of Rk,α(B |N |) gives 

a lower bound on Wk,α,ε(B
|N |, A|N |). The value of CR∗

k,α(A|N |) gives an upper bound on 
Wk,α,ε(B

|N |, A|N |) by Theorem 2 of [5]. �
Proof of Proposition 2. The set of feasible coalitions is independent of k, so k1 ≤ k2 implies

N (k1) ⊆N (k2) �⇒ supp(Fk1) ⊆ supp(Fk2)

so for all x, y ∈ X,

Pk1,α,0(x, y) > 0 �⇒ Pk2,α,0(x, y) > 0

and

Pk1,α,0
(
x,X \ {x}) > 0 �⇒ Pk2,α,0

(
x,X \ {x}) > 0

which implies

x /∈ Λk1,α �⇒ x /∈ Λk2,α

which implies Λk1,α ⊇ Λk2,α . Furthermore, for x ∈ Λk2,α ,

y ∈ D̄k1,α(x) �⇒ P t
k1,α,0(y, x) > 0 for some t ∈N+

�⇒ P t
k2,α,0(y, x) > 0 �⇒ y ∈ D̄k2,α(x). �

Proof of Proposition 3. For given x ∈ X, assume there exists S ⊆ {i ∈ N : xi = B} such that

∀T ⊆ S, |T | ≤ k,∃i ∈ T : |Ni \ S| + |Ni ∩ T |
|Ni | + |Ni ∩ T | <

1

1 + α
.

Take such an S. Then for all T ⊆ S, |T | ≤ k, there exists i ∈ T such that

α
(|Ni \ S| + |Ni ∩ T |) < |Ni ∩ S| ≤ ui(x).

The left hand side is the maximum payoff attainable by player i from playing A if all players 
in S \ T play B . So no subset of players in S of size ≤ k will switch to A unless some subset 
of players in S have already switched to A. Therefore x /∈ D̄k,α(A|N |). This proves the ‘only if’ 
part of the proposition.

To prove the ‘if’ part of the proposition assume that x /∈ D̄k,α(A|N |). Starting from state 
x = x1, if there is any feasible coalition U ⊆ N , |U | ≤ k, xU �= A|U |, such that for all i ∈ U , 
ui(xU = A|U |, xt−U) ≥ ui(x

t ), then with some probability U better responds and the state moves 
to xt+1

U = A|U |, xt+1
−U = xt

−U . Iterate until there is no such subset of players, say at time τ . Let 
S = {i ∈ N : xτ = B}. This set must be nonempty or else xτ = A|N |, which would contradict 
i
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x /∈ D̄k,α(A|N |). Now, for all T ⊆ S, |T | ≤ k, as at least one player, say player i, in T would be 
strictly worse off if T switched to action A, we have

α
(|Ni \ S| + |Ni ∩ T |) < ui

(
xτ

) = |Ni ∩ S| = |Ni | − |Ni \ S|.
Rearranging gives

|Ni \ S| + |Ni ∩ T |
|Ni | + |Ni ∩ T | <

1

1 + α
.

and we have our result. �
Proof of Proposition 4. Λ1,α = {B |N |, A|N |}. Note that, by Proposition 2, D̄1,α(A|N |) ⊆
D̄k,α(A|N |) for all k ≥ 1. So

CR∗
1,α

(
A|N |) = R1,α

(
B |N |) = r1,α

(
B |N |, D̄1,α

(
A|N |))

≥ r1,α

(
B |N |, D̄k>1,α

(
A|N |)) ≥ rk>1,α

(
B |N |, D̄k>1,α

(
A|N |))

= Rk>1,α

(
B |N |) = CR∗

k>1,α

(
A|N |) �

Proof of Proposition 5. First the ‘only if’ part of the statement is addressed. Let x ∈ PA and 
S ⊆ {i ∈ N : xi = A} be parochial. I0(S) must be nonempty. For any α, i ∈ I0(S), N ⊇ T ⊇ {i}, 
as

ui(x) = α|Ni | > |Ni | ≥ ui(x̃i = B, x̂−i ) for any x̂−i ,

we have

x̃T ∈ AT (x) �⇒ x̃i = A.

Then, by induction, for any i ∈ Im(S), m ≥ 1, N ⊇ T ⊇ {i}, as

ui(x) ≥ α
(|Ni | − |Ni \ S|) > |Ni | − |Ni \ S| ≥ |Ni | −

∣∣Ni ∩ Im−1(S)
∣∣

≥ ui

(
x̃i = B, x̃Im−1(S) = A|Im−1(S)|, x̂−(Im−1(S)∪{i})

)
for any x̂−(Im−1(S)∪{i}),

we have

x̃T ∈ AT (x) �⇒ x̃i = A.

So, for any xt ∈ PA, xt+1
S = A|S| and therefore xt+1 ∈ PA /� B |N |. So x ∈ PA implies x /∈

D̄k,α(B |N |).
Now the ‘if’ part of the statement is addressed. Assume that x /∈ D̄k,α(B |N |) for any k, α. 

If there exists feasible S ⊆ N such that

xS �= B |S| and

∃α : ∀i ∈ S, ui

(
B |S|, x−S

) ≥ ui(x), (∗)

then, assuming k ≥ |S|, we have S ∈ supp(Fk). Assuming α < α,

B |S| ∈ AS(x) so Pk,α,0
(
x,

(
B |S|, x−S

))
> 0.

Starting from xt /∈ D̄k,α(B |N |), let xt+1 = (B |S|, x−S) for such an S, and iterate until a state, x̃, 
is reached such that there does not exist feasible S which satisfies (∗). Let T = {i ∈ N : x̃i = A}. 
Then I0(T ) �= ∅ or some feasible subset of T would satisfy (∗) as there would exist α such that
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∀ i ∈ T , ui

(
B |T |, x̃−T

) = |Ni | ≥ α
(|Ni | − 1

) ≥ ui(x̃).

If �m such that Im(T ) = T , then choose m such that Im(T ) = Im−1(T ). Then

∀ i ∈ T \ Im(T ), |Ni \ T | > ∣∣Ni ∩ Im−1(T )
∣∣ = ∣∣Ni ∩ Im(T )

∣∣.
But then, for all i ∈ T \ Im(T ), there exists α such that

ui

(
B |T \Im(T )|, x̃−(T \Im(T ))

) ≥ |Ni \ T | + ∣∣Ni ∩ (
T \ Im(T )

)∣∣
> α

(∣∣Ni ∩ Im(T )
∣∣ + ∣∣Ni ∩ (

T \ Im(T )
)∣∣) = α|Ni ∩ T |

≥ ui(x̃)

so some feasible subset of T \ Im(T ) satisfies (∗) and we have a contradiction. Therefore ∃m

such that Im(T ) = T . T is a parochial set such that xT = A|T |. Therefore x ∈PA. �
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