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a b s t r a c t

This paper studies stochastic stability methods applied to processes on general state spaces. This includes
settings in which agents repeatedly interact and choose from an uncountable set of strategies. Dynamics
exist for which the stochastically stable states differ from those of any reasonable finite discretization.
When there are a finite number of rest points of the unperturbed dynamic, sufficient conditions for
analogues of results from the finite state space literature are derived and studied. Illustrative examples
are given.
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1. Introduction

The occurrence of social learning and the convergence of agents’
behavior via processes of adaptive behavior is well-documented
within economics (e.g. Chong et al., 2006; Selten and Apesteguia,
2005). The possibility of multiple resting points for such processes
naturally leads one to questionwhich of these stable states is more
plausible from an economic perspective. Strongly influenced by
evolutionary game theory (Smith and Price, 1973), a literature has
grown that analyses the robustness of stable states of social learn-
ing dynamics to random errors made by players in their choice
of action (Kandori et al., 1993; Young, 1993a). These ideas have
been applied to a variety of economic situations, including bargain-
ing (Binmore et al., 2003; Naidu et al., 2010), Nash demand games
(Young, 1993b; Agastya, 1999), exchange economies (Serrano and
Volij, 2008), local interaction on networks and the persistence of
altruistic behavior (Eshel et al., 1998).

A common approach when assessing the robustness of stable
states of social learning dynamics has been that pioneered by Kan-
dori et al. (1993) and Young (1993a), building on the work of
Freidlin and Wentzell (1984). Agents are assumed to make errors
independently and when they do make an error are assumed to
play a strategy chosen at random from a distribution with full
support on a finite set of strategies. This imposes a mathematical
structure on the process that leads to clear and appealing charac-
terization results.
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Unfortunately, such results cannot be straightforwardly applied
when agents have non-finite sets of strategies.1 Even assuming
the convergence of the underlying social learning dynamic, the
addition of random errors can lead to behavior which hinders
efforts to obtain a clear cut characterization of the long run pattern
of play. This paper takes up the task of analyzing the problems and
intricacies which arise and, when there are a finite number of rest
points of the underlying dynamic, determines a set of sufficient
conditions which enable existing results to be applied to models
with continuous state spaces. These conditions include a continuity
requirement on error distributions and players’ responses as a
function of the current state, an asymptotic stability condition and
a condition which ensures a specific type of discontinuity does not
occur at rest points of the underlying dynamic. Examples are given
showing how no subset of the conditions is sufficient on its own.

Fortunately, all of these conditions are satisfied for many
common models found in economics. Typical error distributions
of the kind described above coupled with the continuous best
responses found in many models of industrial organization will
often satisfy all of the conditions. This study applies the theory to
linear quadratic games and to population models in the style of
Kandori et al. (1993).

A related paper is that of Feinberg (2006), which also looks
at discrete time, continuous state space processes. However, the
paper in question imposes the strong condition that the perturbed

1 An early paper in the literature (Foster and Young, 1990) has an infinite state
space and a continuous time dynamic in which perturbations are modeled as a
Wiener process. However, it differs markedly from the majority of the literature,
in which the error distributions are irrelevant to the stability results as long as they
have full support.
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process be governed by transition probabilities that are continuous
functions of the current state of the process. The bulk of the analysis
in the current paper concerns situations where this is not the case.
Moreover, Feinberg considers a particular unperturbed dynamic
and state space, whereas the current paper is more general in
its scope. Schenk-Hoppé (2000) adapts the results of Freidlin and
Wentzell (1984) and Ellison (2000) for use in finding stochastically
stable states in a continuous strategy oligopoly model equipped
with an imitation dynamic.

By considering finite state spaces, Young (1993a) dispenses
with the need for regularity assumptions found in treatments of
perturbed dynamics by Freidlin and Wentzell (1984), Kifer (1988,
1990). Specifically, all finite state spaces are compact, continuity
requirements become unnecessary, and the probability of non-
convergence to some stable state in given finite time need no
longer be bounded by a function of error probabilities. The treat-
ment of the current paper incorporates some finiteness in that
the set of orders of magnitude of one step transition probabili-
ties is taken to be finite. This allows us to use weaker continuity
requirements on transition probabilities. We also dispense with
compactness assumptions on the state space. From an economics
perspective this enables, for example, the use of the Cartesian plane
as the state space and the use of error probabilities which are in-
dependent across players.

The paper is organized as follows. Section 2 introduces the ideas
of the paper via two motivating examples. Section 3 describes the
processes of interest, gives convergence results, looks at transition
probabilities between stable states, and defines a useful regularity
property, showing how this property allows the problems associ-
ated with infinite state spaces to be circumvented. Section 4 gives
sufficient conditions for this property to hold and discusses each of
the conditions, giving examples of the problems which arise if any
condition fails to hold. Section 5 gives examples. Section 6 solves
an example from Section 2 for which our regularity condition fails
to hold. Section 7 concludes. Formal proofs are relegated to the
Appendix.

2. Motivating examples

This paper focuses on situations where agents follow some rule
when deciding how to behave. The rule can be deterministic or
random, cautious or hasty, imitative or best responding: any kind
of behavioral bias or irregularity can be represented. Usually the
rule is adaptive in the sense that an agent’s behavior is intended to
improve his lot.What reallymatters is that the rule has theMarkov
property: the past per se does not affect the future, although
features of the present shaped by the past, including memories,
are allowed to do so. We analyze situations where behavior over
time will converge towards one of a number of stable states. As
long as there is some probability of convergence to more than
one stable state, this is predictively awkward. The possibility of
random errors or idiosyncratic play justifies the introduction of
perturbed versions of the process which help in obtaining long
run predictions. There is a well-developed literature which deals
with these problems for finite state spaces,2 so the first question
that must be addressed is whether there is benefit to be had from
dealing directlywith processes on general state spaces, rather than
with finite discrete approximations.

2.1. Discretization can fail to represent the original process accurately

There is not always a suitable finite discretization of a process
available. To illustrate, we present the following example. Consider

2 See also Bergin and Lipman (1996), van Damme and Weibull (2002), Beggs
(2005).
a Markov process with state space X = [0, 1] ⊂ R endowed
with the Euclidean distancemetric. Let the process be governed by
the Markov kernel P(., .). The Markov kernel is a generalized ana-
logue of transition probabilities onMarkov chains. P(x, A) gives the
probability with which the process moves from state x to any state
within a set of states A. For notational ease, for y ∈ X , we identify
P(., y) := P(., {y}). Let P(x, x2) = 1. This process has a set of stable
states Λ = {0, 1}: from x∗

∈ Λ, P(x∗, x∗) = 1. We examine a per-
turbed variant of the process inwhich each period,with probability
1 − ε the unperturbed process is followed, and with probability ε
the new state is drawn from the uniform distribution U[[0, 1]]. This
perturbed process has an invariantmeasureπε which converges to
a measure with all weight on {0} as ε → 0: the set of stochastically
stable3 states is {0}.

Any discretized state space and process should satisfy some
properties in order for it to be a reasonable representation of the
original process. We suggest the following as reasonable restric-
tions on the discretized state space X∆ ⊆ X and the discretized un-
perturbed process P∆(., .): (a) From a state x ∈ X∆, if a set A ⊆ X is
reached with positive probability under the original process, then
the closest states to A in X∆ (under the original metric) are reached
with positive probability under the discretized process P∆(., .);
(b) If, from a state x ∈ X∆, under the original process the set of
states in X which are closer to z ∈ X∆ than to any other point in X∆

is never reached with positive probability, then z is never reached
with positive probability under the discretized process; (c) Stable
states of the original process are states of the discretized process
and therefore stable states of the discretized process by (b).

We take as a discretization of the perturbation (the uniform
distribution on X) any distribution on X∆ that places positive
probability on all states in X∆. Now, for any finite discretization
satisfying our conditions, as ε → 0, the limit of πε places positive
probability on all states in {0, 1}: discretizing the process has given
us one additional stochastically stable state.4

Finding the stochastically stable states of the original process in
this section turns out to be simple. The reason for this is that far
enough along any convergent path to a stable state, the probability
under the perturbed process of moving to the basin of attraction of
another given stable state is of constant order of ε. For example,
from any convergent path to 0 under the unperturbed process
P(., .), at any given future period t the probability under the
perturbed process of being in the basin of attraction of state is
1 is of order ε∞

= 0. There do not exist convergent paths to 0
with escape probabilities of different orders of ε. We shall define
Property C as the absence of multiple paths which converge to the
same stable state and have different orders of escape probability.
When Property C holds, we show that variants of results used
heavily in the finite state space stochastic stability literature can
be used. An important part of the current paper gives sufficient
conditions under which Property C holds.

2.2. Multiple convergent paths

The next example can be considered as a model in which there
are two possible focal points for a social norm. There are n ≥ 2

3 The use of the term ‘stochastic stability’ in the economics literature refers
almost exclusively to states with positive weight under some limiting measure.
Other uses of the term appear in the literature on dynamic processes. This paper
follows the economic usage.
4 It may be remarked that, for this example, there exist sequences of finite

discretizations such that the limit (of the sequence of discretizations) of the limits
(as ε → 0) of πε converges to the stochastically stable states of the original
process. Such a sequence does not always exist, as is apparent from the example
in Section 2.2.
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agentswho contribute some real amount of effort towards the pro-
vision of a public good. If at least some threshold number of agents
contribute at least some focal amount (which we take to be 1),
then agents converge towards that level of contribution. Otherwise
they converge towards a zero contribution. Consider a state space
X = [0, xmax]

n
⊂ Rn

+
, xmax > 1, n ∈ N+. Let x = (x1, . . . , xn) ∈ X

denote a representative element. Define I(x) as the set of players
who contribute at least 1 in a given state x:

I(x) = {i ∈ {1, . . . , n} : xi ≥ 1}.

For some k < n, k ∈ N+, we define P(., .) as follows:

If |I(x)| < k then P

x,

x
2


= 1

If |I(x)| ≥ k then P

x,

x + 1n

2


= 1.

The process has stable states Λ = {0n, 1n
}. We examine a per-

turbed variant of the process in which each period, with proba-
bility 1 −

n
i=1 εi the unperturbed process is followed, and with

probability εi the new state is drawn from the distribution:

Gi(x, .) ∼ U[{x̄ ∈ X : (|{r : xr = x̄r}| = n − i)}].

That is, with probability εi, exactly i agents randomly choose their
contribution from a uniform distribution on [0, xmax]. There exist
convergent paths to 1n with |I(x)| ∈ {k, k + 1, . . . , n}. From a
convergent path to 1n for which |I(x)| = k, a move to the basin
of attraction of 0n in a single period is an event with probability
of order ε. From a convergent path to 1n for which |I(x)| = n, a
move to the basin of attraction of 0n in a single period is an event
with probability of order εn−k+1. Property C does not hold. The only
stochastically stable state of this process turns out to be 0n. Show-
ing that this is the case is complicated by Property C not holding, so
recourse to more general methods is necessary (see Section 6). For
completeness, we note that if k < n − k + 1, then any reasonable
finite discretization of the process leads to 1n being selected as the
unique stochastically stable state.

3. A general model of perturbed adaptive behavior

A very general model is presented: the unperturbed dynamic
can be anyMarkov process on any separablemetric space, the only
assumption being the nonemptiness of, and convergence of the
process to, a set of stable states. The perturbedmodel then allows a
broad class of perturbations which includes independent random
errors such as are found in the traditional stochastic stability
literature, but also allows correlated errors and any type of state
dependent behavior.5

3.1. Quantitative characterization

The first step is to model an unperturbed dynamic which gives
the behavior of agents in the absence of random perturbations. Let
Φ be a Markov process on a separable metric space X with kernel
P(x, A), x ∈ X , A ∈ B(X), where B(X) is the Borel σ -algebra.

Definition 1. The set of stable states is defined:

Λ := {x ∈ X : P(x, x) = 1}.

Assumption 1.

Λ ≠ ∅, Λ is closed.

5 For example, perturbations could include coalitional behavior such as that
found in Newton (2012), depend on relative payoffs as in Blume (1993), or show
some degree of intentionality as in Naidu et al. (2010).
Definition 2. The basin of attraction Wi of x∗

i ∈ Λ is:

Wi :=

x ∈ X : for every open V ⊇ {x∗

i },

P t(x, V ) → 1 as t → ∞

.

Define W :=


i Wi. Let W δ
i := Wi ∩ Bδ(x∗

i ) and W δ
:=


i W
δ
i ,

where Bδ(x) is the open ball of radius δ centered at x. We now in-
troduce an assumption which guarantees that wherever you start
in the state space you end up arbitrarily close to some element of
Λ—the unperturbed process Φ converges to a stable state. This as-
sumption is necessary to the purpose of this paper, which is to give
tools by which to select from several stable states. If convergence
were not assumed, then equilibrium selectionwould become a sec-
ondary issue.

Assumption 2 (Convergence).

∀ δ > 0, x ∈ X, ∃Tδx such that P t(x,W δ) = 1 for all t ≥ Tδx.

Note, from any x ∈ X , it is assumed that convergence occurs in
bounded time. Boundedness is unnecessary when state spaces are
finite as analysis in such a case can proceed without a distinction
being drawn between stable and unstable states.6

Φ can be taken to represent some unperturbed dynamic which
describes the evolution of the strategies of players in a game, with
each entry in a vector x ∈ X describing the strategy chosen by
a player in some previous time period. In this context the kernel
P(x, A) can be taken to be some sort of (not necessarily continuous)
best response or imitation dynamic. Let {Φε}ε , ε ∈ (0, 1

M ),M ∈ N+,
be a family of Markov processes on the state space X with kernels
Pε(x, A). Define:

Pε(x, A) =


1 −

M
i=1

εi


P(x, A)

+


{i∈N+:i<M}

εiGi(x, A) + εMGM(A)

where Gi(x, .), GM(.) are probability measures on B(X). For A ∈

B(X), Gi(., A) are non-negative B(X)-measurable functions on
X . As a sum of B(X)-measurable functions, Pε(., A) is B(X)-
measurable. Note that Pε(x, X) = 1 is satisfied. {Φε}ε is a subset
of the class of Puiseux Markov processes. It is not necessary for
the powers of ε to be integers, but here they are assumed so for
expositional ease. Note that perturbations according to Gi occur
withprobabilities that approach zero at rate εi as ε is taken to zero.7

As all of our measures have B(X) as their domain and all our
functions are B(X)-measurable, we can use the property that an
integral over a sum of measures is equal to the sum of integrals
over thosemeasures8 to show (Lemma 1 in the Appendix) that any
positive transition probability over a finite number of periods has
an order of magnitude given by ε to some integer. That is, for any
x ∈ X , A ∈ B(X), T ∈ N+, if PT

ε (x, A) > 0, then

lεr < PT
ε (x, A) ≤ (M + 1)Tεr

for some positive real l and non-negative integer r . This fact is used
heavily in proving the results of the paper.

6 Inertia can still be modeled under processes satisfying Assumption 2, but it will
always be a finite amount of inertia. For example a state (x, n) ∉ Λ could proceed
with positive probability to a state (x, n + 1) ∉ Λ up to (x, n̄) for some, possibly
very large, n̄ ∈ N+ .
7 Setting ε = e

−1
η , the processes in this paper satisfy: limη→0 η log Pη(x,U) =

− infy∈U ρ(x, y) for open sets U and a function ρ(., .) : X × X → R. ρ(., .) is not
necessarily continuous and so does not necessarily satisfy the conditions of Kifer
(1990). For example, independent error models do not satisfy continuity of ρ(., .).
8 See Fremlin (2001), 234H(c).
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In the most common models of stochastic stability, which we
refer to as independent error models (Young, 1993a; Kandori et al.,
1993), the state is composed of strategy profiles, each player has
an independent probability of making an error with probability
ε and players who make errors play strategies chosen from a
given distribution with full support. Such a process satisfies the
definition above.9 We now show that for any given value of ε, Φε

has a unique invariant measure. This measure is predictive in the
sense that it gives the frequencies with which given sets of states
will be observed in the long run.

Proposition 1. Φε has a unique invariant probability measure πε .

Proposition 2. For all x ∈ X,

sup
A∈B(X)

|P t
ε(x, A) − πε(A)| → 0 as t → ∞.

The independence of GM(.) from x makes GM(.) an irreducibil-
ity measure. That is, from any x ∈ X , any A ∈ B(X) such that
GM(A) > 0 will eventually be reached by the process. The pres-
ence of the GM(.) term in Pε(., .) is sufficient, but not necessary, for
the existence of a unique invariant measure and ergodicity. In fact,
for several examples later in the paper, the analysis is independent
of GM(.).

3.2. Invariant measures when perturbations are rare

In the preceding subsection it was shown that Φε has a unique
invariant measure πε which depends on ε. In order to predict long
term behavior under small perturbations it helps to analyze the
limit as ε → 0. As stochastic stability is primarily used as a tool
of equilibrium selection, we desire that, as ε gets small, πε place
arbitrarily small probability mass on sets of states which are not
close to the stable states of the unperturbed process. Assumption 2
does not guarantee this (see counterexample in Appendix B.1).
Hence we impose the following assumption, that restricts the
perturbed dynamic so that, from some point in the state space, the
process far enough in the future is likely to be close to a stable state.

Assumption 3 (Perturbed Stability).

∀ δ > 0, ∃ x ∈ X, εδ, rδ > 0 s.t. lim
t→∞

P t
ε(x,W

δ) > 1 − εrδ

for all ε < εδ.

Ergodicity implies that the condition of Assumption 3 holding for
some x implies that it holds for all x. Note that if the Tδx in Assump-
tion 2 are independent of x, then Assumption 3 is automatically
satisfied.10,11

Proposition 3. For any η ∈ (0, 1], A ∈ B(X) such that Λ ∩ cl(A) =

∅ there exists ε̂ such that πε(A) < η for all ε < ε̂.

Corollary 1. If π is a limiting measure (in the sense of weak conver-
gence of measures) of πε as ε → 0, then π is an invariant measure
of the unperturbed process Φ . Specifically, π(Λ) = 1.

So, the addition of perturbations to the model can be seen as
a way of selecting between the alternative invariant measures of
the unperturbed process. We now move to find conditions under

9 Independent error models do not have Pε(x, A) continuous in x for any given
A ∈ B(X) and so do not satisfy the assumptions of Feinberg (2006).
10 As for t ≥ Tδx , small enough ε, we then have P t

ε(x,W
δ) ≥ (1 −

M
i=1 εi)Tδx

PTδx (x,W δ) = (1 −
M

i=1 εi)Tδx > (1 − Mε)Tδx > 1 − 2TδxMε > 1 − ε
1
2 .

11 Note that the proof of Proposition 3 is the only place in this paper where
Assumption 3 is used.
which processes on a general state space can be analyzed using
similar tools to those used in the finite state space literature. The
following assumption is made:

Assumption 4.

|Λ| < ∞.

Cases for which |Λ| = ∞ can sometimes be analyzed using a
careful application of the results of Freidlin andWentzell (1984).12
Note that |Λ| < ∞ implies thatΛ = {x∗

1, . . . , x
∗
ν} for some ν ∈ N+.

Limiting invariantmeasures inmany examples turn out to place all
of the probability mass on a single stable state, predicting that in
the long run the process should be observed to be at or near that
state almost all of the time.

Definition 3. Stable states x∗
∈ Λ with π(x∗) > 0 are called

stochastically stable.

The rest of the paper devotes itself to the question of how to
find stochastically stable states and the analysis of intricacies that
can arise due to having an infinite state space.

3.3. Transition probabilities between stable states

In order to find stochastically stable states itwill be necessary to
determine the magnitudes of the transition probabilities between
the basins of attraction of different stable states. Thesemagnitudes
are given as powers of ε. The following Bachmann–Landau asymp-
totic notation expresses the idea of f being bounded below by g .

f (ε) ∈ Ω(g(ε)) ⇔ ∃k > 0, ε̄ s.t. ∀ ε < ε̄, kg(ε) ≤ |f (ε)|.

Define:

V (x∗

k , x
∗

j ) := inf

i : ∀x ∈ Wk,


∃t : P t

ε(x,Wj) ∈ Ω(εi)


∧ ∞

V−(x∗

k , x
∗

j ) := inf

i : ∀δ > 0,

∃x ∈ W δ
k :

∃t : P t

ε(x,Wj) ∈ Ω(εi)


∧ ∞

which can be interpreted as resistances measuring the difficulty of
moving from the basin of attraction of x∗

k to the basin of attraction
of x∗

j . V (x∗

k , x
∗

j ) and V−(x∗

k , x
∗

j ) measure respectively the most un-
likely and easiest way in which amove from close to x∗

k toWj could
occur. The values of V (x∗

k , x
∗

j ) and V−(x∗

k , x
∗

j )will depend onwhich
error distributionsGi are used along paths between neighborhoods
of the two stable states. As paths occur with probabilities of order
εr for positive integers r , it follows thatV andV−, when finite,must
take integer values.

Before proceeding further, some notation is required. Fδ(t) is
the set of states which under the unperturbed dynamic do not
converge to W δ within t periods. V̄i is simply the maximum finite
value from the V−(x∗

i , .) functions.

Definition 4.

Fδ(t) := {x ∈ X : ∃ t ′ ≥ t s.t. P t ′(x,W δ) < 1},
V̄i := max

j:V−(x∗i ,x∗j )<∞

V−(x∗

i , x
∗

j ).

The definition of Fδ(t) together with Assumption 2 implies that for
any x ∈ X , for large enough t , x ∉ Fδ(t). For very large t , Fδ(t)
can be understood as the set of states with very large convergence
times Tδx.

12 See Section 6, the Appendix, and Schenk-Hoppé (2000) for an introduction to
the ideas involved.
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The following assumption dictates that from starting points
close to any stable state x∗

k , the process cannot be more likely to
transit to states fromwhich convergence times are arbitrarily large
than it is to transit to the basin of attraction of any other stable
state x∗

j for which V−(x∗

k , x
∗

j ) < ∞. It further prohibits unbound-
edly large convergence times for states arbitrarily close to stable
states. This and Assumption 2 are stronger than convergence as-
sumptionsmade in the finite state space literature. However, these
assumptions are not redundant: the extension of ‘mistake count-
ing’ methods of determining stochastic stability to general state
spaces (Proposition 4) does not hold without Assumptions 2 and
5. Counterexamples given in Appendix B demonstrate that even
when state spaces are countable (but not finite), results can fail
when these assumptions are dropped.

Assumption 5 (Fast Convergence). There exists δ̂ such that for all
δ < δ̂,

∃Tδ+ : ∀x∗

i ∈ Λ, x ∈ W δ
i , @t : P t

ε(x, Fδ(Tδ+)) ∈ Ω(εV̄i−1),

and W δ̂
∩ Fδ(Tδ+) = ∅.

Note that if there is a uniform bound on convergence times, that is
the Tδx in Assumption 2 do not depend on x, then setting Tδ+ = Tδx,
we have that Fδ(Tδ+) = ∅, so Assumption 5 is satisfied. This will
always be the case when the state space is finite.

A regularity property is now defined that allows a single mag-
nitude of transition probability to characterize transitions from
states within the basin of attraction of, and close to, one stable
state to the basin of attraction of another stable state. We shall fur-
ther require that the appropriate orders of transition probabilities
can occur within a bounded number of periods T ,13 and that there
exists some uniform lower bound on transition probabilities for
given ε.14

Definition 5 (Property C). Property C is said to hold when

(C1) V (x∗

k , x
∗

j ) = V−(x∗

k , x
∗

j ) for all x
∗

k , x
∗

j ∈ Λ, and
(C2) For V (x∗

k , x
∗

j ) ≠ ∞, there exists δkj > 0 such that for all

δ̃ > 0, there exist Tkj(δ̃) ∈ N+, l > 0 such that ∀ x ∈ W
δkj
k ,

P
Tkj(δ̃)
ε (x,W δ̃

j ) > lεV (x∗k ,x∗j ).

The convergence of the process to stable states (Assumptions 2
and 3) ensures that, for small ε, the process spends almost all of
the time close to stable states. Property C allows a single value to
characterize the order of magnitude of transition probabilities be-
tween these small neighborhoods of stable states. A strengthening
of convergence assumptions (Assumption 5) enables us to equate
these probabilities to the probabilities which govern the related
process which is only observed when the state is close to a stable
state.15 As there are a finite number of stable states, the problem of
determining the stochastically stable states is reduced to a discrete
problem: the sets W δ

k for which πε(W δ
k ) 9 0 as ε → 0 are deter-

mined solely by the values of V (., .). Analogues of results from the
finite state space stochastic stability literature can then be used.

13 This will eliminate the possibility of the existence of an infinite sequence
{x(i)}i∈N converging to x∗

k such that limi→∞ min{t ∈ N+ : P t
ε(x(i),Wj) ∈

Ω(ε
V (x∗k ,x∗j )

)} → ∞. If such a sequence existed, there could exist a distribution on
Wk such that on entering Wk according to this distribution the process would have
infinite expected waiting time until an escape probability of order Ω(ε

V (x∗k ,x∗j )
) is

possible.
14 This eliminates the possibility of the existence of an infinite sequence {x(i)}i∈N

converging to x∗

k such that limi→∞ sup{l ∈ R++ : PT
ε (x(i),Wj) ≥ lεV (x∗k ,x∗j )

} → 0.
15 This step is formalized in Lemma 6 in Appendix A and counterexamples
showing the importance of Assumptions 2 and 5 to Lemma 6 are given in
Appendix B.
3.4. Characterization restated for infinite state spaces

Let L = {1, . . . , ν} index the states in Λ. A graph on L is an i-
graph if each j ≠ i has a single exiting directed edge, and the graph
has no cycles. Let G(i) denote the set of all i-graphs. Letting k → j
denote a directed edge from k to j, define:

V(i) = min
g∈G(i)


(k→j)∈g

V (x∗

k , x
∗

j ),

Lmin = {i ∈ L : V(i) = min
j∈L

V(j)}.

Note that it is possible that V(i) = ∞ for some, but not all, i ∈ L.
An analogue of the key result of Young (1993a) and Kandori et al.
(1993) can now be stated.

Proposition 4. If Assumptions 1–5 and Property C hold, πε ⇒ π as
ε → 0, then

π(x∗

i ) > 0 ⇔ i ∈ Lmin.

The proof analyzes the process restricted to small neighbor-
hoods of stable states. The invariant probability measure of the re-
stricted process is a restriction and scaling of the invariant mea-
sure of the original process. For fixed ε, from any state, any of
these neighborhoods which have positive invariant measure can
be reached with positive probability in bounded time. This allows
the construction of a finite state spaceMarkov chainwith invariant
measure equal to the invariant measure of the restricted process.
Property C gives that the order of the transition probabilities of this
chain are precisely εV (.,.), and the finite problem can be solved.16

4. Sufficient conditions for Property C

Given the usefulness of Property C in allowing the use of an
analogous characterization to that in the finite state space litera-
ture, a natural question to ask is underwhat conditions it holds and
whether or not these conditions are plausible and commonly sat-
isfied. The next proposition concerns itself with finding sufficient
conditions for Property C.

Proposition 5 gives conditions for Property C that can be sat-
isfied by independent error models of stochastic stability. This is
important as such models are commonly found in the literature.
Firstly, a continuity requirement is placed on the unperturbed dy-
namic and the error distributions. For the unperturbed dynamic,
this requirement is implied by the weak Feller property P(y, .) ⇒

P(x, .) as y → x, corresponding in a game theoretic context to con-
tinuity of the response correspondence of the underlying game.
For the error distributions, the requirement is satisfied by indepen-
dent error models. Secondly, asymptotic stability is imposed in the
neighborhoods of some stable states. Thirdly, a condition is given
which restricts the behavior of the process at a stable state accord-
ing to the behavior of the process at nearby states. Following the
statement of the proposition, a series of examples illustrates the
role of each condition.

First, define an attainability property for each x∗
∈ Λ which

holds when there is a positive probability of ending up spending
time in the basin of attraction of x∗ when the initial state is
distributed according to GM(.).

Definition 6 (Attainable Stable States). For a given stable state x∗

i ,
let

Bi = {x ∈ X : ∃t s.t. P t
ε(x,Wi) > 0}.

16 As a consequence of Proposition 4, ‘‘radius–coradius’’ results (Ellison, 2000, cit-
ing a no longer available paper of Evans, 1993), which follow immediately from the
i-graph characterization of stochastically stable states, will also hold when appro-
priately restated.
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Fig. 1. Example: (i) does not hold for P(., .).

Note that Bi is independent of ε, as any transition which has pos-
itive probability for some ε > 0, has positive probability for all
ε > 0. Define the set of attainable stable states A = {x∗

i ∈ Λ :

GM(Bi) > 0}. Note that x∗

i ∈ Λ \ A implies πε(Wi) = 0.

Proposition 5. Under Assumptions 1–5, if the following conditions
hold then Property C holds.
(i) For all A ∈ B(X) open, x1 ∈ X, there exist δAx1 > 0, ξAx1 > 0,

such that if x2 ∈ X satisfies d(x1, x2) < δAx1 then:

P(x1, A) > 0 ⇒ P(x2, A) > ξAx1
Gq(x1, A) > 0 ⇒ Gq(x2, A) > ξAx1 , q = 1, . . . ,M − 1.

(ii) For all x∗

i ∈ A, there exists δ̃ > 0 such that W δ̃
i is open.

(iii) For all x∗

j , x
∗

k ∈ Λ, ∃ t:

P t
ε(x

∗

k ,Wj) ∈ Ω(ε
V−(x∗k ,x∗j )

).

A sketch of the proof is as follows. Take a finite path from x∗

k to
Wj. Condition (iii) ensures that no easier path to Wj exists from
any points in Wk which are close enough to x∗

k . Condition (i), used
iteratively (Lemma 8 in the Appendix), shows that from points
close to x∗

k , similar paths can be followedwith similar probabilities.
Condition (ii) ensures that paths which are similar enough to the
original path must enter Wj. The rest of this section consists of
stylized examples designed to demonstrate howProperty C can fail
if any of the conditions of Proposition 5 do not hold.

4.1. Example: (i) does not hold for the unperturbed dynamic

Define X = [0, 1]3. Let the unperturbed process Φ represent
a game played repeatedly by 3 players with strategy spaces [0, 1].
Each period each player plays a best response to the actions of the
other two players in the previous period. For i ∈ N+, define Ci =

3
4

1
2i

, 1
2i


. Define C =


∞

i=1 Ci. Let Bi =


1
2

1
2i

, 3
4

1
2i


, B =


∞

i=1 Bi

(see Fig. 1). Let best response correspondences be symmetric and
anonymous:

BR(a, b) =



Ci+1, if a ∈ Ci, b ∉ C for some i
Ci+1, if a ∈ Ci, b ∈ Cj for some i, j, i ≥ j

1, if a ∈


1
2
, 1


, b ∉ C

Bi+1, if a ∈ Bi, b ∈ Bj for some i, j, i ≥ j
0, if a = 0, b ∈ B ∪ {0}.

Note that x∗

0 = (0, 0, 0) and x∗

1 = (1, 1, 1) are the only stable
states of the unperturbed dynamic. Let the perturbed process Φε

be such that each player independently with probability ε plays an
action chosen uniformly at random from [0, 1] instead of playing
a best response. V (x∗

0, x
∗

1) = 3. V−(x∗

0, x
∗

1) = 1. There is in effect
one convergent path to x∗

0 via states in B × B × B from which it is
easy to escape and another convergent path via states in C ×C ×C
from which it is difficult to escape. As ε → 0, πε ⇒ π where
π((0, 0, 0)) = 1.

Intuitively, (i) not holding for P(., .) carries the implication that
even when two states are extremely close to one another there
is no guarantee that similar random shocks will lead to similar
responses by the players. It is always possible to choose two states
x1, x2 arbitrarily close to one another such that from x1 a single
player choosing a given random action would lead to completely
different short run behavior of the process to that which would
occur if from x2 exactly the same player chose exactly the same
random action.

4.2. Example: (i) does not hold for error distributions

Let X = [0, 1]. Let there be two stable states x∗

k = 0, x∗

j = 1, let
Wi ⊃ Bδ(x∗

i ) for some δ, i = j, k, so (ii) is satisfied. For x ∈ Wk, let
P(x, x/10) = 1. The error process guarantees that (iii) is satisfied:

G1(x, x) = 1, if the first non-zero digit in the decimal
expansion of x is 1.

G1(x,Wj) = 1, otherwise

G2(Wj) = G2(Wk) =
1
2
.

Then V−(x∗

k , x
∗

j ) = 1 and V (x∗

k , x
∗

j ) = 2 no matter whether or not
(i) is satisfied by P(., .).

4.3. Example: (ii) does not hold

Define X = [0, 1]2. Let (x, y) describe an element of the state
space (Fig. 2). Let:

P


(x, y),

x
2
, y + min


1
2
, y


(1 − y)


= 1

then there are 2 stable states, x∗

k = (0, 1) and x∗

j = (0, 0). Let:

A = {(x, y) ∈ X : y = 0}

G1(x, A) =
1
2

for x ∈ U := {(x, y) ∈ X : x + 2y ≥ 2} ,

and let G1(x, .) be uniform on X otherwise. Let G2(A) = 1. Then
(i) and (iii) hold but V−(x∗

k , x
∗

j ) = 1 and V (x∗

k , x
∗

j ) = 2. Intuitively,
although (i) implies that from any point close to x∗

k but not inU it is
possible to reach any point arbitrarily close to x∗

j with a probability
of order ε, (ii) not holding means that this is not sufficient for con-
vergence to x∗

j and the process ends up reconverging towards x∗

k .

4.4. Example: (iii) does not hold

Define X = [0, 1] × [−1, 1]. Let (x, y) describe an element of
the state space. Let:

P

(x, y),

 x
2
,
y
2


=

max

0, 3

5 − x, 1
2 − y


max


0, 3

5 − x, 1
2 − y


+ max


0,min


x −

2
5 , y


P


(x, y),

x + 1
2

,
y + 1
2


=

max

0,min


x −

2
5 , y


max


0, 3

5 − x, 1
2 − y


+ max


0,min


x −

2
5 , y


then there are 2 stable states, x∗

k = (0, 0) and x∗

j = (1, 1). Note that
under the unperturbed dynamic the process will in each period
move in a straight line towards one of the stable states. Let:

G1((x, y), .) ∼ U[{(x′, y′) : x′
= x or y′

= y}]
G2(.) ∼ U[X].

Then (i) and (ii) hold but V−(x∗

k , x
∗

j ) = 1 and V (x∗

k , x
∗

j ) = 2. Al-
though there exists a convergent path to x∗

k from which Wj can be
reached with a probability of order ε (such as those in Area A in
Fig. 3), the limit x∗

k does not have this property and so we cannot
rule out the existence of convergent pathswith lower escape prob-
abilities (such as those in Area B in the figure).
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5. Economic examples

5.1. Linear quadratic games

We apply the theory to two player games with strategies yi ∈

R+ and the following payoff functions:

ui(yi, yj) = aiy2i + biyiyj + ciyi + diyj,
ai, bi < 0; ci > 0; ai, bi, ci, di ∈ R.

This class of games includes public goods problems with strategic
substitutes and Cournot duopolies with linear demand and
quadratic costs. Oechssler andRiedel (2001) showed that under the
replicator dynamic with symmetric payoff functions such games
converge to the interior equilibrium in which players play yinti =
bicj−2ciaj
4aiaj−bibj

.17 We assume a multiplicity of equilibria: yinti > 0 so that

xI = (yint1 , yint2 ) is a Nash equilibrium; 4aiaj < bibj so that corner
equilibria exist: xc1 = (ycnr1 , 0), xc2 = (0, ycnr2 ), ycnri =

−ci
2ai

. Let the
unperturbed dynamic be a Markov process on X = R2

+
in which

each period one player best responds to the current action of the
other player, followingwhich the other player best responds to the
new action of the first player. Let the metric on X be Euclidean
distance. The best response of player i to yj is

BRi(yj) = max


−biyj − ci
2ai

, 0


Φ has kernel:

P

(yi, yj),


BRi(yj), BRj(BRi(yj))


=

1
2
, i = 1, 2.

This gives:

WI = {xI}, Wci = {(yi, yj) : yi > yinti , yj < yintj }.

Note that P(., .) satisfies condition (i) of Proposition 5. We analyze
two possible perturbed dynamics.

5.1.1. Uniform local perturbations
For some small ς > 0, define:

G1((y1, y2), .) ∼ U[Bς ((y1, y2))]

Gn((y1, y2), .) =


X
G1((y1, y2), dx)Gn−1(x, .),

n = 2, . . . ,M − 1
GM((0, 0)) = 1.

These Gn(., .),GM(.) satisfy condition (i) of Proposition 5. GM(.) is
not necessary for the results of this section, although it is of inter-
est to note that anyMarkovian dynamic with some small, bounded
below, probability of an ‘Armageddon’ event will satisfy the condi-
tions for ergodicity. A = {xc1, xc2} and it is clear that for some
δ > 0,W δ

ci are open so condition (ii) is also satisfied. For almost all
values of ς , for any escape path from a state close to xci toW δ

cj there
is a similar path from xci itself toW δ

cj, so condition (iii) is generically
satisfied.18,19 Now, for large enough M , the order of perturbations

17 yinti =
−c

2a+b under symmetry.
18 The exception to this is when an expression for V (xci, xcj) would be an integer
even before the ceiling function is applied.
19 Thus Assumption 5 is satisfied as for any δ s.t. W δ

∩ Bδ(xI ) = {xI }, γ > 0, for
large enough t , Fδ(t) ⊆ {(y1, y2) : mini∈{1,2} d(yi, yinti ) < γ } \ {xI }. So for small
enough δ and γ , correspondingly large t̃ , x ∈ W δ

i , we have that P t
ε(x, Fδ(t̃)) is of the

order of εV (x∗i ,x∗j ) for all t .
required to move from near xci toWcj is given by:

V (xci, xcj) =


min


yintj

ς
,
ycnri − yinti

ς


and applying Proposition 4 we obtain:

Proposition 6.
min


yintj , ycnri − yinti


≥ min


yinti , ycnrj − yintj


⇐⇒ ∃ ς̂ such that ∀ ς < ς̂, ∃ M̂ such that ∀M > M̂,

π(xci) > 0.

5.1.2. Proportional perturbations
For some k ∈ (0, 1), define:

G1((y1, y2), .) ∼ U[[ky1, y1] × [ky2, y2]]

Gn((y1, y2), .) =


X
G1((y1, y2), dx)Gn−1(x, .),

n = 2, . . . ,M − 1
GM((0, 0)) = 1.
Similarly to above, conditions (i), (iii), (iv) are satisfied. Now, for
largeM ,20

V (xci, xcj) =


log


yinti
ycnri


log k


and applying Proposition 4 we obtain:

Proposition 7.

ycnri

yinti
≥

ycnrj

yintj

⇐⇒ ∃k̂ : ∀ k > k̂, ∃ M̂ such that ∀M > M̂, π(xci) > 0.

5.2. Sampling a population

Take a two player symmetric matrix game Γ in which a player
has a set N of possible actions, |N| = n. Let there be a continuum
of agents on the unit interval. The state space is defined as the pro-
portions in which each action is played at a point in time: X is the
unit (n−1)-simplex. In period t , independently of his previous ac-
tions, with probability 1−α any given agent plays the same action
as at time t − 1. With probability α he randomly and uniformly
samples a finite number k of the actions of players in period t − 1
before playing a best response to the mixed strategy σ , which has
each action being played with a probability equal to its proportion
in his sample. If multiple best responses exist we assume that they
are chosen with equal probability. Denote the distribution of such
best responses to an action profile x by BR(x). Then:
P(x, x̃) = 1, x̃ := (1 − α)x + αBR(x).
Note that as the probability of drawing any given sample is con-
tinuous in x, P(x, .) is itself continuous and does not violate condi-
tion (i) of Proposition 5. We restrict attention to games for which
this process satisfies Assumption 2. It is trivial to construct games
which do not satisfy Assumption 2 under this process, for example
the 2 by 2 matrix of zeros.

Any stable state x∗ is close to a Nash equilibrium of Γ in the
following sense:

20 V (xci, xcj) is the lowest integer V such that kV ycnri < yinti .
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Proposition 8. For any ξ > 0, there exists k̄ ∈ N+ such that if k > k̄,
for any x∗

∈ Λ there exists a symmetric Nash equilibrium xNE of Γ
such that |x∗

− xNE | < ξ .

The perturbations are defined as follows. For some small ς > 0,
define:

G1(x, .) ∼ U[Bς (x)]

Gn(x, .) =


X
G1(x, dy)Gn−1(y, .), n = 2, . . . ,M − 1

GM(.) ∼ U[X].

These Gn(., .),GM(.) satisfy condition (i) of Proposition 5. GM(.) is
not necessary for the results of this section.

Proposition 9. If xNE is a strict symmetric pure Nash equilibrium,
then there exists k̄ ∈ N+ such that if k > k̄, then xNE ∈ A and
xNE is asymptotically stable.

In a game such as that of Fig. 4 in which there are two strict
symmetric Nash equilibria, by Proposition 9, for large enough k
both of these Nash equilibria correspond to stable states in A such
that the basin of attraction includes some open ball centered on the
Nash equilibrium. Close to the mixed Nash equilibrium, for large
enough k, there is one stable state xint = (p, 1 − p) which is not in
A. Hence condition (ii) of Proposition 5 is satisfied. Then, as long
as neither p nor 1 − p is an integer multiple of ς , condition (iii) is
also satisfied.21,22 xint converges to the mixed Nash equilibrium as
k → ∞. Identical arguments to those in Young (1998) then give:

Proposition 10. In a 2 by 2 game with two symmetric strict pure
Nash equilibria, one of which is risk dominant, there exists k̄ ∈ N+

such that if k > k̄, then the risk dominant equilibrium is uniquely
stochastically stable for small enough ς for large enough M.

6. What if Property C does not hold?

Analysis is less straightforward if Property C does not hold. In
some cases, however, a simple argument can still be used to find
stochastically stable states. In the example in Section 2.2, Condi-
tions (i), (ii) and (iii) of Proposition 5 all fail at state 1n. Property C
does not hold as V−(1n, 0n) = 1 whereas V (1n, 0n) = n − k + 1.
However, the state space can still be partitioned into a finite col-
lection of disjoint sets such that, under Pε(., .), any of the sets can
be reached from any x ∈ X with a probability bounded below by a
strictly positive number. Such a partition is:

X = X0 ∪ Xk ∪ Xk+1 . . . ∪ Xn

where for i = k, . . . , n:

Xi = {x ∈ X : |I(x)| = i}

and

X0 = {x ∈ X : |I(x)| < k}.

Bounds can be found for the transition probabilities between these
sets. Freidlin and Wentzell (1984) style tree arguments can then
be used. The ‘flow’ of probability mass from Xi to Xi−1 for i =

k + 1, . . . , n, and from Xk to X0 can be shown to be of order ε, so a
tree of order εn−k+1 rooted at X0 can be constructed. Any tree not
rooted at X0 must include an edge leaving X0 of order εk. Taking
limits of the invariant measures then gives the conclusion that all
probability mass in the limit is concentrated in X0 and therefore,
by Proposition 3, on 0n.

21 If p = 2ς , from (0, 1) it takes an order ε3 event tomove to the basin of attraction
of (1, 0), but from (ξ , 1 − ξ), ξ ∈ (0, ς), an order ε2 event is all that is required.
22 Assumption 5 can then be seen to be satisfied by a similar argument to that in
Section 5.1 (see Footnote 19).
Fig. 2. Example: (ii) does not hold.

Fig. 3. Example: (iii) does not hold. Although convergent paths to (0, 0) within A
only require an order of ε transition to reachWj , convergent paths within B require
an order of ε2 transition. SoWj cannot always be reached with Ω(ε) probabilities.

Fig. 4. A two player strategic game. (L, L) and (R, R) assumed to be strict Nash
equilibria.

Proposition 11. In the example of Section 2.2 the unique stochasti-
cally stable state is 0n.

Given the simple nature of the counterexamples in Section 4,
a similar analysis to the above can be carried out. In Example 4.1,
W0 can be partitioned into states that converge within C × C × C ,
those that converge within B × B × B, and those that attain x∗

0 . In
Example 4.2, Wk can be partitioned into states whose first digit is
1 and states whose first digit is not 1. In Example 4.3, Wk can be
partitioned into the two areas on either side of the dotted line in
Fig. 2. In Example 4.4,Wk can be partitioned into states with y > 0
and those with y ≤ 0.

7. Concluding remarks

This paper has demonstrated how commonly used stochastic
stability methods can be applied to settings with infinite state
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spaces, corresponding to situations in which economic agents
choose from infinite strategy sets. It includes sufficient conditions
for the straightforward application of existing results in the litera-
ture to such settings. Moreover, the analysis of the complications
that can arise with general state spaces aids understanding of the
problems ofwhich one should be awarewhen applying ideas of ro-
bustness to random perturbations to processes which do not sat-
isfy all of our conditions.

Another approach when seeking to find stochastically stable
states for games with infinite strategy sets is to discretize the
strategy space and the transition kernel. This is not always simple
and can lead to problems such as the absence of simple closed
form best response functions and nonexistence of equilibrium.
Difficulties can be met when passing to the limit of any
discretization as it becomes fine. Moreover, examples in this paper
show that any discretization satisfying plausible criteria can lead
to the selection of different equilibria to those selected when the
analysis is carried out directly on the original state space and
process. Sometimes it may be better to analyze stochastic stability
whilst remaining in a non-finite world. This paper gives tools with
which to aid that endeavor.

Appendix A. Proofs

Definition 7. Ameasureϕ onB(X) is an irreducibility measure and
Φε is ϕ-irreducible if for all x ∈ X , whenever ϕ(A) > 0, there
exists some t > 0, possibly depending on both A and x, such that
P t

ε(x, A) > 0.

Definition 8. A set A ∈ B(X) is petite if there exist a nontrivial23
measure ν and a probability distribution a on Z+ such that ∀x ∈ A,
t

a(t)P t
ε(x, .) ≥ ν(.)

A ∈ B(X) is νt̃-small if there exist such ν, a, with a(t̃) = 1 for some
t̃ ∈ Z+.

Definition 9. The process is said to be strongly aperiodic if there
exists a ν1-small set A ∈ B(X) with ν1(A) > 0.

Definition 10. For A ∈ B(X), τA := min{t ≥ 1 : Φ t
ε ∈ A} ∧ ∞.

Proof of Proposition 1. GM(.) is an irreducibility measure on
B(X) as for any A ∈ B(X) with GM(A) > 0 we have Pε(x, A) ≥

εMGM(A) > 0 for all x ∈ X . Letting a(1) = 1, ν(.) = εMGM(.) we
see that the set X is petite as for all x ∈ X , Pε(x, .) ≥ εMGM(.) =

ν(.). As X is the entire state space, τX ≡ 1. Combined with irre-
ducibility and petiteness of X this implies the existence of a unique
invariant probability measure πε for Φε .24 �

Proof of Proposition 2. Take some A ∈ B(X)withGM(A) > 0. For
all x ∈ A, Pε(x, A) ≥ εMGM(A) > 0. Letting ν1(.) = εMGM(.), we
see that A is ν1-small. Therefore the process is strongly aperiodic.
This and theuniqueness and finiteness ofπε imply the result.25 �

Proof of Proposition 3. As Λ ∩ cl(A) = ∅, there exists δ such that
W δ

∩ cl(A) = ∅. By Assumption 3 there exist x, εδ , rδ such that

lim
t→∞

P t
ε(x,W

δ) > 1 − εrδ for all ε < εδ.

By Proposition 2, |P t
ε(x,W

δ)−πε(W δ)| → 0 as t → ∞, soπε(W δ)

> 1 − εrδ . So, for small enough ε, πε(W δ) > 1 − η, and we have

πε(A) ≤ πε(cl(A)) ≤ 1 − πε(W δ) < 1 − (1 − η) = η. �

23 A measure which is not everywhere zero.
24 Meyn and Tweedie (1994, Theorem 3.2).
25 Meyn and Tweedie (2009, Theorem 13.0.1).
Proof of Corollary 1. For n ∈ N, let

Sn = {x ∈ X : d(x, Λ) > 2−n
},

S̄n = {x ∈ X : d(x, Λ) ≥ 2−n
}.

For all n ∈ N, S̄n is closed, so S̄n = cl(S̄n). As S̄n ∩ Λ = ∅, Proposi-
tion 3 implies πε(S̄n) → 0 as ε → 0. So, as Sn ⊆ S̄n, πε(Sn) → 0
as ε → 0. Sn is open, so by the definition of weak convergence, it
must be that π(Sn) = 0. As Λ is closed, we have that

X \ Λ =

∞
n=1

Sn, and therefore

π(X \ Λ) = π


∞
n=1

Sn


≤

∞
n=1

π(Sn) = 0.

So the only states in X which can have positive probability under
π are in Λ. �

To aid conciseness, denote G0(x, .) := P(x, .) and GM(x, .) :=

GM(.). Denote, for qt ∈ {0, 1, . . . ,M}, t = 1, . . . , T ,

G(q1,...,qT )(x, .) :=


X
Gq1(x, dy1)


X
Gq2(y1, dy2) . . .

×


X
GqT−1(yT−2, dyT−1)GqT (yT−1, .). (A.1)

Observe that for small ε, 1/2 < (1− ε − · · ·− εM) < 1. For the rest
of this section, we assume that this holds. We have

Pε(x, .) ≤

M
q=0

εqGq(x, .) ≤ 2Pε(x, .)

with the second inequality strict for any Pε(x, A) > 0. Similarly,

PT
ε (x, .) =


X
Pε(x, dy1)


X
Pε(y1, dy2) . . .

×


X
Pε(yT−2, dyT−1)Pε(yT−1, .)

≤


q1,...,qT


X
εq1Gq1(x, dy1)


X
εq2Gq2(y1, dy2) . . .

×


X
εqT−1GqT−1(yT−2, dyT−1)ε

qT GqT (yT−1, .)

=


q1,...,qT

εq1+···+qT G(q1,...,qT )(x, .) ≤ 2TPT
ε (x, .) (A.2)

with the second inequality strict for any PT
ε (x, A) > 0.

Lemma 1. For x ∈ X, A ∈ B(X), T ∈ N+, PT
ε (x, A) > 0, let r =

min{q1 + · · · + qT | G(q1,...,qT )(x, A) > 0}. Then, for some l > 0
independent of ε,

lεr < PT
ε (x, A) ≤ (M + 1)Tεr .

Proof. Considering a term in (A.2) such that q̃1 + · · · + q̃T ≤ r ,
G(q̃1,...,q̃T )(x, A) > 0, we have

PT
ε (x, A) >

1
2T

G(q̃1,...,q̃T )(x, A) εq̃1+···+q̃T ≥ l εr ,

for l =
1
2T

G(q̃1,...,q̃T )(x, A).

If q1 + · · · + qT ≥ r for all strictly positive terms in (A.2), then as
there are at most (M + 1)T such terms,

PT
ε (x, A) ≤


q1,...,qT

εq1+···+qT ≤ (M + 1)Tεr . �
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Lemma 2. (i) x∗

j ∈ A ⇐⇒ ∀ x∗

k ∈ Λ, V (x∗

k , x
∗

j ) < ∞.
(ii) x∗

j ∉ A =⇒ ∀ x∗

k ∈ A, V (x∗

k , x
∗

j ) = ∞.
(iii) x∗

j ∈ A =⇒ ∀δ, x ∈ X, Prx(τW δ
j

< ∞) = 1.

Proof. Let Bj be as in Definition 6. Let x∗

j ∈ A. Then GM(Bj) > 0.
Fix ε. Let

BTδn
j :=


x ∈ Bj : ∀t ≥ T , P t

ε(x,W
δ
j ) > 1/2tn


.

Fix δ > 0. By Definition 6, x ∈ Bj implies that P t1
ε (x,Wj) > 0 for

some t1. This implies that for large enough t2, n,

P t2
ε (x,W δ

j ) =


X
P t1

ε (x, dy)P t2−t1
ε (y,W δ

j )

≥


Wj

P t1
ε (x, dy) P t2−t1

ε (y,W δ
j )  

≥(1/2)t2−t1 Pt2−t1 (y,Wδ
j )

by (A.2)

≥


1
2

t2−t1 
Wj

P t1
ε (x, dy)P t2−t1(y,W δ

j )

>
by bounded
convergence


1
2

t2 
Wj

P t1
ε (x, dy)

=


1
2

t2
P t1

ε (x,Wj) >
1
2t2

1
n
,

where the third inequality comes from bounded convergence as
Assumption 2 implies that for y ∈ Wj, P t2−t1(.,W δ

j ) → 1 pointwise
as t2 → ∞. So x ∈ Bt2δn

j .
The above implies Bj = ∪T∈N+

∪n∈N+
BTδn
j . This union is count-

able, so GM(Bj) > 0 implies that GM(BTδn
j ) > 0 for some T , n. So, for

all x ∈ X , Pε(x, BTδn
j ) ≥ εMGM(BTδn

j ) > 0. For x ∈ BTδn
j , PT

ε (x,W δ
j ) >

1/2T n. Combining, for all x ∈ X ,

PT+1
ε (x,W δ

j ) =


X
Pε(x, dy)PT

ε (y,W δ
j )

≥


BTδn
j

Pε(x, dy) PT
ε (y,W δ

j )  
>1/2T n

≥
1

2Tn


BTδn
j

Pε(x, dy)

=
1

2Tn
Pε(x, BTδn

j )  
≥εMGM (BTδn

j )

≥
1

2Tn
εMGM(BTδn

j ) > 0.

Hence it follows, by the definition of V (., .), that for all x∗

k ∈ Λ,
V (x∗

k , x
∗

j ) ≤ M(T + 1) < ∞. The uniform lower bound on PT+1
ε

(.,W δ
j ) implies that τW δ

j
< ∞ with probability 1.

Let x∗

i be such that V (x∗

k , x
∗

i ) < ∞ for all x∗

k ∈ Λ. Let δ = δji

from the definition of Property C. For x ∈ B
Tδjin
j , PT

ε (x,W
δji
j ) > 1/2T n.

By Property (C2) and V (x∗

j , x
∗

i ) < ∞, there exist t , l > 0, such that

for all x ∈ W
δji
j , P t

ε(x,Wi) > lεV (x∗j ,x∗i ). Hence for all x ∈ B
Tδjin
j ,

PT+t
ε (x,Wi) =


X
PT

ε (x, dy)P t
ε(y,Wi)

≥


W

δji
j

PT
ε (x, dy) P t

ε(y,Wi)  
>lε

V (x∗j ,x∗i )
≥ lεV (x∗j ,x∗i )


W

δji
j

PT
ε (x, dy)

= lεV (x∗j ,x∗i ) PT
ε (x,W

δji
j )  

>1/2T n

>
1

2Tn
lεV (x∗j ,x∗i )

> 0.

So x ∈ B
Tδjin
j implies x ∈ Bi. That is, B

Tδjin
j ⊆ Bi for all T , n. From

above we know that GM(B
Tδjin
j ) > 0 for some T , n, so it must be

that GM(Bi) > 0 and x∗

i ∈ A. By contraposition, if x∗

i ∉ A, it must
be that V (x∗

j , x
∗

i ) = ∞. �

Definition 11. Fix δ̄, Tδ̄+, so that for all x∗

k , x
∗

j ∈ A, x ∈ W δ̄
k ,

(i) @t : P t
ε(x,Wj) ∈ Ω(ε

V−(x∗k ,x∗j )−1
), (ii) δ̄ < δkj,

(iii) δ̄, Tδ̄+ satisfy Assumption 5.

To see that Definition 11 makes sense, note that (i) can be
satisfied due to the definition ofV−. For (ii), δkj is as in the definition
of Property C. Further define:
T := max

k,j: x∗k ,x∗j ∈A
Tkj(δ̄) + Tδ̄+.

Lemma 3. For all t ≥ T , x∗

k , x
∗

j ∈ A, there exist l > 0, ε̄ such that for
all x ∈ W δ̄

k , ε < ε̄,

lεV (x∗k ,x∗j )
< P t

ε(x,W
δ̄
j ) ≤ (M + 1)tεV (x∗k ,x∗j )

. (A.3)

Proof. By Definition 11(ii), δ̄ < δkj, so Property (C2) implies that
there exists l̂ > 0 such that for all x ∈ W δ̄

k ,

P
Tkj(δ̄)
ε (x,W δ̄

j ) > l̂ εV (x∗k ,x∗j )
. (A.4)

By Definition 11(iii), δ̄, Tδ̄+ satisfy Assumption 5, hence W δ̄
j ∩

Fδ̄(Tδ̄+) = ∅. Then, as t ≥ T implies t − Tkj(δ̄) ≥ Tδ̄+, we have,
for all x ∈ W δ̄

j ,

P
t−Tkj(δ̄)
ε (x,W δ̄

j ) ≥
by (A.2)

(1/2)t−Tkj(δ̄) G(0,...,0)  
t−Tkj(δ̄)zeros

(x,W δ̄
j )

= (1/2)t−Tkj(δ̄) P t−Tkj(δ̄)(x,W δ̄
j )  

=1ast−Tkj(δ̄)≥Tδ̄+

= (1/2)t−Tkj(δ̄). (A.5)

Combining (A.4) and (A.5), for all x ∈ W δ̄
k ,

P t
ε(x,W

δ̄
j ) =


X
P
Tkj(δ̄)
ε (x, dy)P

t−Tkj(δ̄)
ε (y,W δ̄

j )

≥


W δ̄

j

P
Tkj(δ̄)
ε (x, dy) P

t−Tkj(δ̄)
ε (y,W δ̄

j )  
≥(1/2)

t−Tkj(δ̄) by(A.5)

≥ (1/2)t−Tkj(δ̄)

W δ̄

j

P
Tkj(δ̄)
ε (x, dy)

= (1/2)t−Tkj(δ̄) P
Tkj(δ̄)
ε (x,W δ̄

j )  
>l̂ ε

V (x∗k ,x∗j )
by (A.4)

> (1/2)t−Tkj(δ̄) l̂  
=:l

ε
V (x∗k ,x∗j )

= lεV (x∗k ,x∗j )

and we have the first inequality in (A.3). For x ∈ W δ̄
k , consider the

expansion of P t
ε(x,W

δ̄
j ) in the form (A.2). If there exists a strictly
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positive term with q1 + · · · + qt ≤ V (x∗

k , x
∗

j ) − 1, then by

Lemma 1 we have P t
ε(x,W

δ̄
j ) > lεV (x∗k ,x∗j )−1, so P t

ε(x,W
δ̄
j ) ∈ Ω

(ε
V (x∗k ,x∗j )−1

). Together with Property (C1) this implies P t
ε(x,W

δ̄
j ) ∈

Ω(ε
V−(x∗k ,x∗j )−1

), contradicting Definition 11(i). So all strictly posi-
tive terms have q1 +· · ·+qt ≥ V (x∗

k , x
∗

j ) and by Lemma 1we have

P t
ε(x,W

δ̄
j ) ≤ (M + 1)tεV (x∗k ,x∗j ). �

Define Φ̂ε as the Markov process with kernel P̂ε(., .) = PT
ε (., .).

This process also has invariant measure πε . Define:

τ̂A(k) := min{t > τ̂A(k − 1) : Φ̂ t
ε ∈ A}; τ̂A(0) = 0.

Let W̄ δ
=


i: x∗i ∈A W δ

i and define Φ̃ε as the process Φ̂ε only

observed when it lies in W̄ δ̄ , Φ̃ t
ε = Φ̂

τ̂
W̄ δ̄ (t)

ε . It follows from
Lemma 2(iii) that Prx(τ̂W̄ δ̄ (t) < ∞) = 1. Then the invariant mea-
sure of Φ̃ε is given by:

π̃ε(.) =
πε(.)

πε(W̄ δ̄)
.

Denote:

AP̂ t
ε(x, B) := Prx(Φ̂ t

ε ∈ B, τ̂A(1) ≥ t); x ∈ X; A, B ∈ B(X).

The kernel of Φ̃ε is given by:

P̃ε(x, A) =

∞
t=1

W̄ δ̄ P̂ t
ε(x, A), A ∈ B(W̄ δ̄).

Lemma 4. There exists ε̄ such that for all ε < ε̄, x ∉ Fδ̄(Tδ̄+),

Prx(τ̂W δ̄ > t|τFδ̄(Tδ̄+) > tT ) < ε
t
2 . (A.6)

Proof. For conciseness, write F = Fδ̄(Tδ̄+). Note that
X\F

Pε(., dy1)

X\F

Pε(y1, dy2) . . .

×


X\F

Pε(yT−2, dyT−1)Pε(yT−1, X \ (F ∪ W δ̄))

≤


X
Pε(., dy1)


X
Pε(y1, dy2) . . .

×


X
Pε(yT−2, dyT−1)Pε(yT−1, X \ (F ∪ W δ̄))

= PT
ε (., X \ (F ∪ W δ̄)) ≤ PT

ε (., X \ W δ̄) (A.7)

and that for x ∉ F ,

PT
ε (x, X \ W δ̄) = 1 − PT

ε (x,W δ̄)

≤ 1 − (1 − ε − · · · − εM  
>1−Mε

)T PT (x,W δ̄)  
=1

≤ 1 − (1 − Mε)T < 1 − (1 − 2TMε)

= (2TMε) < ε
3
4 . (A.8)

Now see that, for x ∉ F ,

Prx(Φ̂n
ε ∉ W δ̄, n = 1, . . . , t; Φm

ε ∉ F ,m = 1, . . . , tT )

=


X\F

Pε(x, dy1)

X\F

Pε(y1, dy2) . . .

×


X\F

Pε(yT−2, dyT−1)


X\(F∪W δ̄ )

Pε(yT−1, dyT )

×


X\F

. . .


X\(F∪W δ̄ )

Pε(y(t−1)T−1, dy(t−1)T )
×

 
X\F

Pε(y(t−1)T , dy(t−1)T+1) . . .


X\F

Pε(ytT−2, dytT−1)Pε(ytT−1, X \ (F ∪ W δ̄))  
<ε

3
4 by(A.7) and (A.8)

< ε
3
4


X\F

Pε(x, dy1)

X\F

Pε(y1, dy2) . . .


X\F

Pε(yT−2, dyT−1)

×


X\(F∪W δ̄ )

Pε(yT−1, dyT )

X\F

. . .


X\(F∪W δ̄ )

Pε(y(t−1)T−1, dy(t−1)T )

= ε
3
4


X\F

Pε(x, dy1)

X\F

Pε(y1, dy2) . . .


X\F

Pε(yT−2, dyT−1)

×


X\(F∪W δ̄ )

Pε(yT−1, dyT )

X\F

. . . Pε(y(t−1)T−1, X \ (F ∪ W δ̄))

< · · · < ε
3
4 t (A.9)

where the strict inequalities result from the repeated use of (A.7)
and (A.8). Observe that for x ∉ F ,

P(x, F) = 0 and therefore P(x, X \ F) = 1. (A.10)

To see this is so, note that by definition, Fδ̄(Tδ̄+) = ∪t≥Tδ̄+{y ∈ X :

P t(y,W δ̄) < 1}, a countable union of measurable sets. Therefore,
if P(x, F) > 0, then there exists t ≥ Tδ̄+ such that P(x, {y ∈ X :

P t(y,W δ̄) < 1}) > 0. This implies that P t+1(x,W δ̄) < 1, implying
x ∈ F , a contradiction.

Now, using (A.10), for x ∉ F ,

Prx(Φm
ε ∉ F ,m = 1, . . . , tT )

=


X\F

Pε(x, dy1)

X\F

Pε(y1, dy2) . . .

×


X\F

Pε(ytT−2, dytT−1)Pε(ytT−1, X \ F)

≥


X\F

1
2
P(x, dy1)


X\F

1
2
P(y1, dy2) . . .

×


X\F

1
2
P(ytT−2, dytT−1)

1
2
P(ytT−1, X \ F)  

=1 by (A.10)

=


1
2

tT 
X\F

P(x, dy1)

X\F

P(y1, dy2) . . .

×


X\F

P(ytT−2, dytT−1)

=


1
2

tT 
X\F

P(x, dy1)

X\F

P(y1, dy2) . . .

× P(ytT−2, X \ F)  
=1 by (A.10)

= · · · =


1
2

tT

. (A.11)

Using the definition of conditional probability, (A.9) and (A.11), for
x ∉ F ,

Prx(τ̂W δ̄ > t|τF > tT )

= Prx(Φ̂n
ε ∉ W δ̄, n = 1, . . . , t|Φm

ε ∉ F ,m = 1, . . . , tT )

=
Prx(Φ̂n

ε ∉ W δ̄, n = 1, . . . , t; Φm
ε ∉ F ,m = 1, . . . , tT )

Prx(Φm
ε ∉ F ,m = 1, . . . , tT )

<
ε

3
4 t 1

2

tT =


ε

3
4 1

2

T
t

< ε
t
2 . �
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Lemma 5. For all x∗

i ∈ Λ, there exists ε̄ such that for all ε < ε̄,
x ∈ W δ̄

i ,

Prx(τFδ̄(Tδ̄+) ≤ t̃) ≤ t̃(M + 1)t̃εV̄i . (A.12)

Proof.

Prx(τFδ̄(Tδ̄+) ≤ t̃) ≤

t̃
t=1

P t
ε(x, Fδ̄(Tδ̄+))

≤

t̃
t=1

(M + 1)tεV̄i ≤ t̃(M + 1)t̃εV̄i

where the second inequality follows from Lemma 1 and Assump-
tion 5. �

Lemma 6. Let t̃ > 2maxx∗k ,x∗j ∈A V (x∗

k , x
∗

j ). Then, for all x
∗

k , x
∗

j ∈ A,

there exist l > 0, ε̄ such that for all x ∈ W δ̄
k , x ∉ ∪l: x∗l ∉A Bl, ε < ε̄,

lεV (x∗k ,x∗j )
< P̃ε(x,W δ̄

j ) < (t̃(M + 1)t̃T + 1

+ t̃T (M + 1)t̃T )εV (x∗k ,x∗j )
. (A.13)

Proof.

P̃ε(x,W δ̄
j ) =

∞
t=1

W̄ δ̄ P̂ t
ε(x,W

δ̄
j ) ≥ P̂ε(x,W δ̄

j )

= PT
ε (x,W δ̄

j ) > lεV (x∗k ,x∗j )

where the final inequality uses Lemma 3. Note that x ∈ W δ̄
k , x ∉

∪l: x∗l ∉A Bl, x∗

i ∉ A implies P t
ε(x,W

δ̄
i ) = 0 for all t , hence Prx(τ̂W̄ δ̄ >

t̃) = Prx(τ̂W δ̄ > t̃). Furthermore, using the law of total probability,
Lemmas 3–5, and Property C, we have

P̃ε(x,W δ̄
j ) =

∞
t=1

W̄ δ̄ P̂ t
ε(x,W

δ̄
j )

≤

t̃
t=1

W̄ δ̄ P̂ t
ε(x,W

δ̄
j ) + Prx(τ̂W̄ δ̄ > t̃)

≤

t̃
t=1

P̂ t
ε(x,W

δ̄
j ) + Prx(τ̂W δ̄ > t̃|τFδ̄(Tδ̄+) > t̃T )

× Prx(τFδ̄(Tδ̄+) > t̃T ) + Prx(τ̂W δ̄ > t̃|τFδ̄(Tδ̄+) ≤ t̃T )

× Prx(τFδ̄(Tδ̄+) ≤ t̃T ) [by law of total probability]

≤

t̃
t=1

P̂ t
ε(x,W

δ̄
j ) + Prx(τ̂W δ̄ > t̃|τFδ̄(Tδ̄+) > t̃T )

+ Prx(τFδ̄(Tδ̄+) ≤ t̃T )

< t̃(M + 1)t̃TεV (x∗k ,x∗j )
+ ε

t̃
2 + t̃T (M + 1)t̃TεV̄k

[by Lemmas 3–5 respectively]

≤ t̃(M + 1)t̃TεV (x∗k ,x∗j )
+ ε

V (x∗k ,x∗j )  
as t̃>2V (x∗k ,x∗j )

by statement
of lemma.

+ t̃T (M + 1)t̃T ε
V (x∗k ,x∗j )  

as V̄k≥V−(x∗k ,x∗j )

=V (x∗k ,x∗j )

by defn of V̄k
and (C1)

. �
Lemma 7 (Freidlin and Wentzell, 1984, Lemmas 3.1, 3.2). Assume
there exists a partition of X into finitely many disjoint sets {Xi|i ∈ L},
|L| = ν , such that, for all i, j ∈ L,

∃cij > 0 s.t. inf
x∈Xi

Pε(x, Xj) ≥ cij.

For given invariant measure πε(.), let:

pij :=
1

πε(Xi)


Xi
Pε(x, Xj)πε(dx).

For g ∈ G(i), define:

vol(g) :=


(j→k)∈g

pjk; Qi :=


g∈G(i)

vol(g)

then:

πε(Xi) =
Qi

ν
j=1

Qj

.

Subsequent proofs use the following additional items of Bach-
mann–Landau asymptotic notation, which express the ideas of f
being bounded by g above, and both above and below respectively:
f (ε) ∈ O(g(ε)) ⇔ ∃k > 0, ε̄ s.t. ∀ ε < ε̄, |f (ε)| ≤ kg(ε)
f (ε) ∈ Θ(g(ε)) ⇔ ∃k1, k2 > 0, ε̄ s.t. ∀ ε < ε̄,

k1g(ε) ≤ |f (ε)| ≤ k2g(ε).

Proof of Proposition 4. Let L̃ := {j ∈ L : x∗

j ∈ A}. Let G̃(.), Ṽ(.),
L̃min be as G(.), V(.), Lmin, only defined on L̃ instead of on L. Note
that for x∗

j ∈ A, x∗

k ∉ A, by Lemma 2(ii) we have V (x∗

j , x
∗

k) = ∞.
This implies that for x∗

k ∉ A, V(k) = ∞. Lemma 2(i) implies that
for x∗

j ∈ A, V(j) < ∞. Therefore, x∗

k ∉ A implies k ∉ Lmin. A
further implication is that, for i ∈ Lmin, x∗

j ∈ A, x∗

k ∉ A, the edge
(j → k) will not be in any graph g that solves the minimization
problem in the definition of V(i). Therefore, such a graph g ∈ G(i)
must comprise the union of

(a) a graph g̃ ∈ G̃(i) that is induced from g by the vertex set L̃, and
(b) a set g− of directed edges exiting vertices in L \ L̃, such that

there is a path from each k ∈ L \ L̃ to some j ∈ L̃.
Note that any set of edges that satisfies (b) does so independently
of i, so the choice of g− in the solution of theminimization problem
in the definition of V(i), i ∈ L̃, is independent of i. Therefore, Lmin

is solely determined by solving the problem on L̃. That is,

i ∈ Lmin ⇐⇒ i ∈ L̃min. (A.14)

Partition W̄ δ̄ into {W δ̄
i }i∈L̃ and define, for i, j ∈ L̃:

p̃ε,ij :=
1

π̃ε(W δ̄
i )


W δ̄

i

P̃ε(x,W δ̄
j )π̃ε(dx).

It follows from Definition 6, that π̃ε(∪l: x∗l ∉A Bl) = πε(∪l: x∗l ∉A Bl) =

0, therefore for x∗

i , x
∗

j ∈ A, the bounds on P̃ε(x,W δ̄
j ) in Lemma 6

imply that p̃ε,ij ∈ Θ(ε
V (x∗i ,x∗j )

). Define vol(.) and Qi as in Lemma 7
with pij = p̃ε,ij. Now, by definition of Θ(.),

vol(g) =


(j→k)∈g

p̃ε,jk
∈Θ(ε

V (x∗j ,x∗k )
)

by Lemma 6

∈ Θ(ε


(j→k)∈g

V (x∗j ,x∗k )

)

and

Qi =


g∈G̃(i)

vol(g) ∈ Θ(ε
min

g∈G̃(i)


(j→k)∈g

V (x∗j ,x∗k )

) = Θ(εṼ(i)).
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So, by Lemma 7 and the definitions of Θ(.), L̃min, we have

π̃ε(W δ̄
i ) =

Qi
j∈L̃

Qj
∈ Θ(1) ⇐⇒


j∈L̃

Qj ∈ Θ(εṼ(i))

⇐⇒ Ṽ(i) ≤ Ṽ(j) ∀j ∈ L ⇐⇒ i ∈ L̃min. (A.15)

Note that for x∗

j ∉ A, by the definition of A, πε(W δ̄
j ) = 0, so by

Proposition 3, limε→0 πε(W̄ δ̄) = 1. Finally, see that

π̃ε(W δ̄
i ) ∈ Θ(1)

⇐⇒ lim
ε→0

π̃ε(W δ̄
i ) = lim

ε→0

πε(W δ̄
i )

πε(W̄ δ̄)
> 0

⇐⇒  
as by Proposition 3,

lim
ε→0

πε(W̄ δ̄ )=1

lim
ε→0

πε(W δ̄
i )

= π(W δ̄
i ) > 0 ⇐⇒  

by Corollary 1

π(x∗

i ) > 0. (A.16)

Combining (A.14), (A.15), (A.16) gives i ∈ Lmin ⇐⇒ π(x∗

i )
> 0. �

Lemma 8. Under Condition (i) of Proposition 5, for x ∈ X, A ∈

B(X), A open, T ∈ N+, there exist δAx, ξAx, such that for all y ∈ BδAx(x),

G(q1,...,qT )(x, A) > 0 =⇒ G(q1,...,qT )(y, A) > ξAx.

Proof. For T = 1, the statement of the lemma is simply Condition
(i). We shall prove the lemma by induction on T . Assume it is true
for T = t − 1. Now, as X is a separable metric space and hence
strongly Lindelöf, the support of Gq1(x, .) is a Borel set with mea-
sure 1 under Gq1(x, .). Thus we can integrate over the support of
Gq1(x, .) rather than over the entire space.

G(q1,...,qt )(x, A) > 0

=⇒


suppGq1 (x,.)

Gq1(x, dy)G(q2,...,qt )(y, A) > 0

which implies there exists y1 ∈ suppGq1(x, .) such that G(q2,...,qt )
(y1, A) > 0. Then, by the inductive hypothesis, there exist δAy1 , ξAy1 ,
such that y ∈ E1 := BδAy1

(y1) implies that G(q2,...,qt )(y, A) > ξAy1 .
Also, by the definition of support, y1 ∈ suppGq1(x, .) implies

that Gq1(x, E1) > 0. Hence, by Condition (i), there exist δE1x, ξE1x
such that for all w ∈ E0 := BδE1x

(x), Gq1(w, E1) > ξE1x.
So, for all w ∈ E0,

G(q1,...,qt )(w, A) ≥


E1

Gq1(w, dy)G(q2,...,qt )(y, A)

≥ ξAy1


E1

Gq1(w, dy)

= ξAy1Gq1(w, E1) > ξAy1ξE1x =: ξAx. �

Proof of Proposition 5. We know from Condition (iii) that there
exists T1 such that PT1

ε (x∗

k ,Wj) ∈ Ω(ε
V−(x∗k ,x∗j )

). Let δ̃ satisfy Condi-
tion (ii). By Lemma 1 there exist q1 + · · · + qT1 ≤ V−(x∗

k , x
∗

j ) such
that the term G(q1,...,qT1 )(x∗

k ,Wj) in the expansion of PT1
ε (x∗

k ,Wj)

given by expression (A.2) is strictly positive.
Expanding G(q1,...,qT1 )(x∗

k ,Wj) as per expression (A.1), we see
that the similar expansion of G(q1,...,qT1 )(x∗

k ,Wj \ Fδ̃(t)) differs only
in the final term, which is GqT1

(yT1−1,Wj \ Fδ̃(t)) rather than
GqT1

(yT1−1,Wj). Now, for all z ∈ Wj, there exists t such that z ∉
Fδ̃(t), so 1Wj\Fδ̃(t)
(z) → 1Wj(z) as t → ∞. So by bounded conver-

gence

GqT1
(yT1−1,Wj \ Fδ̃(t))

=


X
1Wj\Fδ̃(t)

(z)GqT1
(yT1−1, dz)

t→∞
−−−→


X
1Wj(z)GqT1

(yT1−1, dz) = GqT1
(yT1−1,Wj). (A.17)

This holds for all yT1−1 ∈ X , so GqT1
(.,Wj \ Fδ̃(t)) converges point-

wise to GqT1
(.,Wj). Using bounded convergence repeatedly on the

integrals in the expansion of G(q1,...,qT1 )(x∗

k ,Wj \ Fδ̃(t)) given by
(A.1), we see that G(q1,...,qT1 )(x∗

k ,Wj\Fδ̃(t)) → G(q1,...,qT1 )(x∗

k ,Wj) as
t → ∞, so we can choose T2 large enough that G(q1,...,qT1 )(x∗

k ,Wj \

Fδ̃(T2)) > 0.

By Lemma 1 we then have PT1
ε (x∗

k ,Wj \ Fδ̃(T2)) ∈ Ω(ε
V−(x∗k ,x∗j )

).
For all z ∈ Wj \ Fδ̃(T2), t ≥ T2, P t(z,W δ̃

j ) = 1. So, for T = T1 + T2,

PT
ε (x∗

k ,W
δ̃
j ) ∈ Ω(ε

V−(x∗k ,x∗j )
).

Expanding PT
ε (x∗

k ,W
δ̃
j ) as in (A.2), there must be a strictly posi-

tive term G(q1,...,qT )(x∗

k ,W
δ̃
j ) in the expansion such that q1 + · · · +

qT ≤ V−(x∗

k , x
∗

j ) or Lemma 1 gives a contradiction to PT
ε (x∗

k ,W
δ̃
j ) ∈

Ω(ε
V−(x∗k ,x∗j )

). So, by Lemma 8, there exist δkj, ξ such that for z ∈

Bδkj(x
∗

k), G(q1,...,qT )(z,W δ̃
j ) > ξ and therefore

PT
ε (z,W δ̃

j ) ≥ εq1+···+qT G(q1,...,qT )(z,W δ̃
j ) > ε

V−(x∗k ,x∗j )
ξ . (A.18)

This shows that for some l > 0, for all x ∈ W
δkj
k , PT

ε (x,W δ̃
j ) >

lεV−(x∗k ,x∗j ). So, by definition of V (., .), we have V (x∗

k , x
∗

j ) ≤ V−(x∗

k ,

x∗

j ). As V (x∗

k , x
∗

j ) ≥ V−(x∗

k , x
∗

j ) by definition, we have V (x∗

k , x
∗

j ) =

V−(x∗

k , x
∗

j ), so (C1) holds.
Now, δ̃ can be chosen arbitrarily small and still satisfy Condi-

tion (ii), so we can assume δ̃ < δ̂, where δ̂ is as in Assumption 5.
Now, by Assumption 5, for any δ̃′ < δ̃ we can choose Tδ̃′+

such
that Fδ̃′(Tδ̃′+

) ∩ W δ̃
j = ∅. Hence, for all x ∈ W δ̃

j , P
T
δ̃′+(x,W δ̃′

j ) = 1.

Therefore, for T ′
= T + Tδ̃′+

, for all x ∈ W
δkj
k ,

PT ′

ε (x,W δ̃′

j ) =


X
PT

ε (x, dy)P
T
δ̃′+

ε (y,W δ̃′

j )

≥


W δ̃

j

PT
ε (x, dy)P

T
δ̃′+

ε (y,W δ̃′

j )

≥


W δ̃

j

PT
ε (x, dy)


1
2

T
δ̃′+

PT
δ̃′+(y,W δ̃′

j )  
=1 as y∉F

δ̃′
(T

δ̃′+
)

=


1
2

T
δ̃′+

PT
ε (x,W δ̃

j )  
>ε

V−(x∗k ,x∗j )
ξ

by (A.18)

>


1
2

T
δ̃′+

ε
V−(x∗k ,x∗j )

ξ .

This shows that for some l′ > 0, for all x ∈ W
δkj
k , PT ′

ε (x,W δ̃′

j ) >

l′εV−(x∗k ,x∗j ), so (C2) holds. �

Proof of Proposition 8. Assume the statement is incorrect for
some ξ > 0. There must be an infinite sequence of stable states
{x∗(k)}k corresponding to increasing values of k such that none of
these stable states are within ξ of any Nash equilibrium. As the se-
quence is bounded it contains a convergent subsequence. Restrict
attention to such a subsequence. Denote its limit by x̄∗. As x̄∗ is not a
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Nash equilibrium at least one of the actions played is not a best re-
sponse to the true distribution of play. Assume that action i is one of
these actions. x̄∗

i > 0. Then there exist k,η > 0, such that for all k >

k, x∗

i (k) > η. Note that as x∗(k) is a stable state, BRi(x∗(k)) = x∗

i (k).
There exists γ such that for all x such that |x − x̄∗

| < γ , best
responses to the true distribution of x are a subset of the best re-
sponses to the true distribution of x̄∗. Define fk(σ ) as the probabil-
ity, at x∗(k), that a sample of size k gives the mixed strategy σ . As
k → ∞, fk(σ ) weakly converges to the probability measure with
point mass on x̄∗. This implies:

∀η ∃k̄ : ∀k > k̄,


σ ∉Bγ (x̄∗)

fk(σ ) < η,

which implies:

BRi(x∗(k)) < η

and we have a contradiction. �

Proof of Proposition 9. Assume that xNEi = 1. Let xt be such that
xti = 1 − ξ, ξ ∈ (0, 1). There exists s ∈ R such that if i is not a
unique best response to the strategy σ then:
j≠i

σj ≥ s.

The proportion of players changing strategy who will sample such
a σ is:

ξ̃ =

k
j=⌈ks⌉


k
j


ξ j(1 − ξ)k−j

∈ Θ(ξ ⌈ks⌉).

That is, of the players called to update their action, a proportion at
least (1 − ξ̃ ) will choose action i. Assuming k is large enough that
⌈ks⌉ ≥ 2, there exists ξ̄ such that:

∀ ξ < ξ̄, ξ̃ < ξ.

So for any xt ∈ Bξ̄ (x
NE) we have that xti = 1 − ξ for some ξ < ξ̄

and:

xt+1
i = (1 − α)xti + αBRi(xti ) ≥ (1 − α)xti + α(1 − ξ̃ )

= (1 − α)(1 − ξ) + α(1 − ξ̃ ) > 1 − ξ = xti .

So we have convergence to xNE from an open ball centered on xNE ,
so xNE ∈ Λ and xNE is asymptotically stable. This open ball is
reachedwith positive probability from anywhere in the state space
so xNE ∈ A. �

Proof of Proposition 11. For i = k + 1, . . . , n, x ∈ Xi:

nε > Pε(x, Xi−1) ≥ ε
i
n

1
xmax

,

therefore pi,i−1 ∈ Θ(ε). Also, for x ∈ Xk:

nε > Pε(x, X0) ≥ ε
k
n

1
xmax

,

and pk,0 ∈ Θ(ε). So there exists a 0-graph g̃ with vol(g̃) ∈ Θ

(εn−k+1). Therefore Q0 ∈ Θ(εn−k+1). For x ∈ X0, i ≠ 0:

Pε(x, Xi) ∈ O(εk)

so any i-graph g , i ≠ 0, has vol(g) ∈ O(ε(n−k)+k) = O(εn). There-
fore Qi ∈ O(εn). Using the formula for πε(Xi) in Lemma 7, we see
that πε(Xi) → 0 as ε → 0 for all i ≠ 0. So πε(X0) → 1 as ε → 0
and by Proposition 3, πε approaches the distribution with point
mass on 0n. �
Appendix B. Counterexamples

B.1. The role of Assumption 3

Here we present a counterexample when Assumption 3 does
not hold. Let X = {xm}m∈N and let X be equipped with the discrete
metric. Let Λ = {x0}. Let

P(xm+1, xm) = 1, m ∈ N,

G1(xm, {xm′ : m′
≥ m̄}) =


1

m̄ − m

 1
4

for m̄ > m,

G2(x0) = 1.

Note that for any xm ∈ X ,m ∈ N+, Pm(xm, Λ) = 1 so Assumption 2
holds. Now note that

If t ′ ≤
log 1

2

log(1 − ε2)
, then (1 − ε2)t

′

≥
1
2
,

implying that for t ′ ≤
log 1

2
log(1−ε2)

, m > t ′,

Prxm(Φ t
ε ≠ x0 for t = 1, . . . , t ′) = (1 − ε2)t

′

≥
1
2
. (B.1)

Consider ε such that 1/2ε2 is an integer, and note that,

G1


x0,

xm : m ≥

1
ε2


=


1
1
ε2

 1
4

= ε
1
2 . (B.2)

Further note that

1
2ε2

<
log 1

2

log(1 − ε2)
and

1
ε2

>
1

2ε2
, (B.3)

so (B.1) holds for t ′ = 1/2ε2, m = 1/ε2.
Now, as G2(x0) > 0, πε(x0) > 0. The invariant measure of other

sets as a proportion ofπε(x0) is then given by the expected number
of periods the process spends in those sets between visits to x0.26
For the set X \ {x0}, this quantity is bounded below by

Prx0(τ{x0} > 1/2ε2)
1

2ε2

= Prx0(Φ
t
≠ x0, t = 1, . . . , 1/2ε2)

1
2ε2

≥ ε G1


x0,

xm : m ≥

1
ε2


  

=ε
1
2 by (B.2).


1 − ε2 1

2ε2  
≥1/2by (B.1)
and (B.3).

1
2ε2

≥ ε ε
1
2

1
2

1
2ε2

=
1

4ε
1
2
.

This is true for arbitrarily small ε, and 1/4ε
1
2 → ∞ as ε → 0.

Therefore, πε(X \ {x0}) ↛ 0 as ε → 0. Proposition 3 does not
hold.

B.2. The role of Assumption 2

Here we present a counterexample when Assumption 2 does
not hold. Let X = {x∗

k , x
∗

j } ∪ {xm}m∈N+
and let X be equipped

with the discrete metric. In accordance with previous notation, let
Λ = {x∗

k , x
∗

j }. Let

P(xm, x∗

k) =
1

m + 1
, P(xm, xm+1) =

m
m + 1

, m ∈ N+,

26 Meyn and Tweedie (2009, Theorem 10.4.9).
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G1(x∗

k , x1) = 1, G1(x∗

j , x
∗

j ) = 1,

G1(xm, x∗

j ) = 1, m ∈ N+,

G2(x∗

k) = 1.

Note that for any x ∈ X , P t(x, Λ) → 1 as t → ∞, but for any
x ∉ Λ, there does not exist a t such that P t(x, Λ) = 1. Hence
Assumption 2 is violated. Observe that P t

ε(x
∗

k , x
∗

j ) ∈ Θ(ε2) for
all t ∈ N+. As for small enough δ, Bδ(x∗

k) = {x∗

k}, we have that
V (x∗

k , x
∗

j ) = V−(x∗

k , x
∗

j ) = 2. Similarly, V (x∗

j , x
∗

k) = V−(x∗

j , x
∗

k) =

2, so (C1) holds. Noting that P2
ε (x∗

k , x
∗

j ) = P1
ε (x∗

j , x
∗

k) = ε2, we see
that (C2) also holds, so Property C holds. However,

P̃ε(x∗

k , x
∗

j ) = ε


ε + (1 − ε)

1
2
ε

+ (1 − ε)2
1
2
2
3
ε + (1 − ε)3

1
2
2
3
3
4
ε + · · ·


= ε2

∞
m=0

1
m + 1

(1 − ε)m = ε2 (− log ε)

1 − ε
,

so for any l ∈ R++, there exists ε̄ such that for all ε < ε̄,

P̃ε(x∗

k , x
∗

j ) = ε2 (− log ε)

1 − ε
> ε2(− log ε) > lε2.

This contradicts Lemma 6.

B.3. The role of Assumption 5

Here we present a counterexample when Assumption 5 does
not hold. Let X = {x∗

k , x
∗

j } ∪ {xm}m∈N+
and let X be equipped with

the discrete metric. Let Λ = {x∗

k , x
∗

j }. Let

P(x1, x∗

k) = 1, P(xm+1, xm) = 1, m ∈ N+,

G1(x∗

j , x
∗

j ) = 1, G1(xm, x∗

j ) = 1, m ∈ N+,

G1(x∗

k , {xm : m ≥ m̄}) =


1
m̄

 1
2

G2(x∗

k) = 1.

Note that for any xm ∈ X , Pm(xm, Λ) = 1 so Assumption 2 holds.
In a similar manner to the example in Appendix B.2 we see that
P t

ε(x
∗

k , x
∗

j ) ∈ Θ(ε2) for all t ∈ N+, V (x∗

k , x
∗

j ) = V−(x∗

k , x
∗

j ) = 2 and
that Property C is satisfied. For small δ,W δ

= Λ, so

Fδ(t) = {x ∈ X : ∃t ′ ≥ t s.t. P t ′(x, Λ) < 1} = {xm : m > t}

and as Pε(x∗

k , {xm : m > t}) ∈ Ω(ε) for all t , Assumption 5 does
not hold. Note that

If
log 3

4

log(1 − ε2)
≥ m ≥


log 1

4

log(1 − ε − ε2)


,

then (1 − ε2)m ≥
3
4

and (1 − ε − ε2)m ≤
1
4
,

implying that form ≥


log 1

4
log(1−ε−ε2)


,

Prxm(Φ t
ε = x∗

j for some t ≤ m; Φ t
ε ≠ x∗

k for t = 1, . . . ,m)

≥ 1 − (1 − (1 − ε2)m)  
Prob at least

one G2(.)event

− (1 − ε − ε2)m  
Prob no G1(.,.)

or G2(.) events

≥ 1 −


1 −

3
4


−


1
4


=

1
2
. (B.4)
Now,

G1


x∗

k ,


xm : m ≥


log 1

4

log(1 − ε − ε2)



=

 1
log 1

4
log(1−ε−ε2)




1
2

>

 1
log 1

4
log(1−ε−ε2)

+ 1

 1
2

=


log(1 − ε − ε2)

log 1
4 + log(1 − ε − ε2)

 1
2

>


log(1 − ε − ε2)

2 log 1
4

 1
2

>


−ε

2 log 1
4

 1
2

=


−2 log

1
4

−
1
2

ε
1
2 . (B.5)

So, using (B.4) and (B.5),

P̃ε(x∗

k , x
∗

j ) ≥ ε G1


x∗

k ,


xm : m ≥


log 1

4

log(1 − ε − ε2)


1
2

> ε


−2 log

1
4

−
1
2

ε
1
2
1
2

=
1
2


−2 log

1
4

−
1
2

ε
3
2 .

This contradicts Lemma 6.
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