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1. Introduction

We study two-sided one-to-one matching markets with side
payments. Two-sided matching markets with side payments - as-
signment problems - were first analyzed by Shapley and Shubik
(1971). In an assignment problem, indivisible objects (e.g., jobs)
are exchanged with monetary transfers (e.g., salaries) between two
finite sets of agents (e.g., workers and firms). Agents are hetero-
geneous in the sense that each object may have different values
to different agents. Each agent either demands or supplies exactly
one unit. Thus, agents form pairs to exchange the corresponding
objects and at the same time make monetary transfers.

An outcome for an assignment problem specifies a matching be-
tween agents of both sides of the market and, for each agent, a pay-
off. An outcome is in the core if no coalition of agents can improve
their payoffs by rematching among themselves.

This paper adds to the literature on the dynamics of assignment
problems. It has been recently shown that under plausible
dynamics of rematching and surplus sharing, convergence to the
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core of the assignment problem is assured (Chen et al., 2012; Bird
et al,, 2013; Klaus and Payot, forthcoming; Nax et al., 2013). A
typical such dynamic involves two agents meeting every period,
and if they can improve upon their current payoffs by matching
with one another, they do so.! The current paper analyzes the
effect of perturbations which can move the process away from core
outcomes. Under such perturbations, any agent can occasionally
make an error and move to an outcome which gives him a payoff
lower than his current payoff. Take any core outcome and subject
it to a small deviation within a single matched pair whereby one
of the agents in the pair gains a unit of payoff and the other loses a
unit of payoff. It is shown that such a small deviation suffices for the
unperturbed blocking dynamics to subsequently move to another
core outcome. More specifically, this can occur in a way that the
reached optimal matching is the same as the original matching and
only payoffs change (Theorem 2), or in such a way that payoffs stay
the same and a different optimal matching, if one exists, is reached
(Theorem 3).

In much the same way that perfectness concepts can be used
to analyze the robustness of static equilibria to mistakes (Selten,
1975; Myerson, 1978), when perturbations are added to a dynamic
process, more precise predictions about the long term behavior
of the process can be obtained. Specifically, the invariant measure

1 There has long existed a literature on paths to stability in matching problems
with non-transferable utility. See, for example, Roth and Vande Vate (1990),
Diamantoudi et al. (2004), Klaus and Klijn (2007) and Kojima and Unver (2008). It is
therefore notable that similar problems have only recently begun to be addressed
for matching problems with transferable utility.
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of the perturbed process can place much greater weight on some
equilibria of the unperturbed process than on others. As the prob-
ability of perturbations is taken to zero, the equilibria that have
positive weight under the limiting invariant measure are known
as stochastically stable equilibria. These are the outcomes that we
would expect to observe most frequently in the long run when
perturbations are rare. An example of such a process is the best-
response dynamic (the dynamic justification for Nash equilibrium)
together with some small probability that any given agent makes
a mistake and does not play a best response. Recent experimen-
tal evidence supports perturbed best response as a behavioral rule,
but is mixed as to whether mistakes depend strongly on associ-
ated payofflosses. Mds and Nax (2014) find evidence that mistakes
that cause greater payoffloss are less likely, whereas Lim and Neary
(2013) find this not to be the case. The results of the current paper
cover both of these possibilities.

A consequence of small deviations sufficing to move the process
between core states is that stochastic stability is a weak selection
concept. Results are first derived for two simple error processes,
uniform and stepped, which occur in the literature. Following this,
we define the class of weakly payoff monotone error processes. This
is a large class of processes, under which errors that lead to greater
payoff losses are (weakly) less likely. It is shown that for every
process in this class, the results for either uniform or stepped errors
pertain.

Uniform errors (see Young, 1993) are such that every error has
the same (order of magnitude of) probability of occurring. Under
uniform errors we show that there is no selection: every core state
is stochastically stable (Theorem 5). This result is similar in spirit
to the results of Jackson and Watts (2002) and Klaus et al. (2010)
which find no selection in marriage and roommate problems under
uniform error processes.’

Payoff-dependent errors occur with probabilities that depend
on the payoff loss incurred when they are made.’ Logit errors
(see Blume, 1993) are an example of such errors, and occur with
probabilities that are log-linear in such payoff losses. Another
possibility is that errors involving indifference occur more often
than errors by which agents’ payoffs strictly decrease (Serrano
and Volij, 2008). We refer to these latter errors as stepped. Under
stepped errors we find that

(i) All optimal matchings occur in some stochastically stable
outcome (Theorem 6).

(ii) For any agent with different partners in different optimal
matchings, any core payoff can be attained as a stochastically
stable payoff (also Theorem 6).

(iii) For agents who have the same partner in every optimal
matching, the set of stochastically stable payoffs can be a strict
subset of the set of core payoffs (Example 3), but

(iv) if every agent has a unique optimal partner, then we obtain
almost-no-selection: the interior of the set of core payoffs is
stochastically stable, where the interior refers to the set of
payoffs for which no two agents who are not matched to one
another at the optimal matching can do at least as well by
matching with one another (Theorem 7).

Finally, we define the class of weakly payoff monotone error
processes. This class is very large. Despite this, every error process

2 The marriage problem is the non-transferable utility equivalent of the
assignment problem.

3 The relation of such rules to uniform mistake models can be thought of as
similar to the relation between the static concepts of Proper Equilibrium (Myerson,
1978) and Trembling Hand Perfect Equilibrium (Selten, 1975). In the former,
mistakes associated with larger payoff losses are less likely, whereas in the latter
there is no difference.

in this class is either similar to uniform errors or to stepped errors
(Theorem 8). If errors involving small payoff losses occur just as
often as errors involving indifference, the result for uniform errors,
Theorem 5, holds. If errors involving small payoff losses occur
less often than errors involving indifference, then the results for
stepped errors, Theorems 6 and 7, hold. Importantly, this latter
class includes adaptations of popular choice rules, logit and probit
choice, that are derived from random utility models.

2. Related literature
2.1. Perturbed dynamics and selection in the core

A related literature is the literature on convergence to the core
in cooperative games (Feldman, 1974; Green, 1974; Sengupta
and Sengupta, 1996; Agastya, 1997; Serrano and Volij, 2008;
Newton, 2012b). Agastya (1999) shows that if a cooperative
game is modeled as a generalized Nash demand game, then the
stochastically stable states are states in the core at which the
maximum payoff over all agents is minimized. Newton (2012b)
shows that, under some conditions, the addition of joint strategic
switching to such models leads to Rawlsian selection within the
strong core (referred to as the ‘interior core’ in the cited paper),
maximizing the minimum payoff over all agents. In assignment
problems, the strong core is empty as value function inequalities
for matched pairs always hold with equality, so the methods of
Newton (2012b) cannot be applied. Nax and Pradelski (2015) have
recently shown a maxmin selection result within the core for
assignment games, a result discussed next.

2.2. Nax and Pradelski (2015)

Nax and Pradelski (2015) analyze an error process in which
payoffs can be shocked with a probability which is log-linear in
the size of the shock. If an agent, following a shock, has a payoff
lower than that which he could achieve by a change of partner,
then he can change his partner. Using arguments adapted from
Newton and Sawa (2015), Nax and Pradelski (2015) show that
under this process the set of stochastically stable states is a subset
of the least core (Maschler et al., 1979). If any agent has multiple
optimal partners, then the least core equals the core, so the error
processes in the current paper also select within the least core. If
every agent has a unique optimal partner, then the least core can
be a strict subset of the interior of the core, therefore in this case
the least core inclusion of Nax and Pradelski (2015) fails under the
error processes of the current paper. The reason for the difference
between the two papers is that the current paper allows for errors
whereby the agents in a given pair remain matched yet adjust the
payoffs they obtain within the pair, whereas the cited paper only
considers errors with sufficient strength to cause a pair to break
up. This restriction brings their model closer to models in the NTU
literature, which is discussed next.

2.3. Selection in matching problems

Newton and Sawa (2015) give a general selection result for
matching problems (marriage problems, roommate problems,
college admissions problems) for any error process, including
payoff-dependent processes. All stochastically stable matchings
lie within the set of matchings which are most robust to one-
shot deviation. This is often a strict subset of the core. It is
worth commenting on why selection is not often likewise attained
for assignment problems under payoff-dependent dynamics. The
reason is that in the assignment problem, there is always another
core outcome in which payoffs do not differ at all, or differ only
slightly, from the payoffs of the current outcome. If any agent
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has multiple optimal partners, then every core outcome is equally
robust to one-shot deviation. If every agent has a unique optimal
partner, then every interior core outcome is equally robust to one-
shot deviation. Therefore, a similar inclusion holds for assignment
problems as holds for matching problems: stochastically stable
states are contained in the set of one-shot stable outcomes.
However, the continuous, or almost continuous in the case of
discretization, nature of the core in the assignment problem means
that this inclusion has less selective power.

3. The assignment problem

We consider a simple labor market model that matches firms
and workers. Let W and F be two distinct finite sets containing |W|
workers and |F| firms, respectively. Thus, the set of agents equals
W U F. We denote generic agents by i, j, a generic worker by w,
and a generic firm by f. We assume that each worker can work for
at most one firm and a firm can employ at most one worker.* We
denote the set of pairs that agents in W U F can form (including
“degenerate” pairs where agentsi € W UF form a “pair” (i, i) with
themselves) by P(W, F) = {(w,f) € W x F}U{(i,i) | i € WUF}.

A functionv : P(W, F) — Ny is a value function for W U F if for
eachi € WUF, v(i, i) = 0.The value function v describes the value
(in nonnegative integers) that agents create when forming pairs. In
particular, v(i, i) = 0 represents the reservation value of an agent
i € WUF.J? A (two-sided one-to-one) assignment problem is a triple
(W, F,v).

A matching u (for assignment problem (W, F, v)) is a function
u:WUF — W UF of order two (that is, u(u(i)) = i) such that

(i) forw € W, if u(w) # w, then w(w) € F and
(ii) for f € F,if u(f) # f, then u(f) € W.

Two agents i,j € W U F are matched if (i) = j (or equivalently
w(j) = i); for convenience, we also use the notation (i,j) € u.
We refer to (i) as i's partner at . If (w, f) € u, then we say that
worker w and firm f form a couple at w. If (i, i) € w, then we say
that agent i is single at . Thus, at any matching u, the set of agents
is partitioned into couples and singles.

A matching u is optimal if, for all matchings u’, Z(i,j)eu v(i,j) >
Z(U)E”, v(i, j). If i is an optimal matching, then we refer to (i)
as i’'s optimal partner at . We say that a worker w and a firm f
are optimal partners if there exists at least one optimal matching u
such that (w, f) € .

An outcome (for assignment problem (W, F, v)) is a pair (u, u)
where p is a matching and u € N(‘)WUF‘ is a payoff vector such that
(i) if (w, f) € u, thenu,, + uf = v(w, f), and
(i) if (i, 1) € p, thenuy; = v(i, i) = 0.5
Let © denote the set of outcomes (for assignment problem
(W, F,v)).

4 This unit-demand assumption has also been made in the following closely
related articles: Shapley and Shubik (1971), Crawford and Knoer (1981), Chen et al.
(2012), Biré et al. (2013), Klaus and Payot (forthcoming) and Nax et al. (2013).

5 It is convenient to normalize agents’ reservation values to be all equal to zero,
i.e., one only measures net gains from the stand alone value each agent can obtain.
This normalization, for instance, can be obtained by assuming that for each (w, f) €
W x F, worker w requires a minimal salary sy, (w, f) to work for firm f and
firm f is willing to pay a maximal salary spax(w, f) for worker w. Then, taking
the possibility of not forming a pair into account, the joint value created equals
v(w, f) = max{(Smax(w, f) — Smin(w, f)), 0} > 0. Our assumption that values are
integers is justifiable by assuming that a smallest monetary unit of exchange exists.

6 Since later on we will consider (core) stability and (weak) blocking, it is without
loss of generality to use conditions (i) and (ii) to define an outcome instead of the
more standard requirement that 3y Ui = 2 jye, V(s J)-

Note the restriction of payoffs to integer values. This simplifies
analysis, avoiding difficulties that can occur when analyzing either
paths to stability or stochastic stability on uncountable state spaces
(Klaus and Payot, forthcoming; Newton, 2015).

It is typical to refer to an outcome (u, u) [a payoff vector u] as
individually rational if for eachi € W U F, u; > 0. Our assumption
that payoffs are non-negative at any outcome means that this
is automatically satisfied in our model. Without the restriction
that payoffs be non-negative, the set of possible outcomes for a
given assignment problem are countably infinite rather than finite.
The results of the paper hold for either case, but for the sake of
simplicity of exposition, we include the restriction in our model.

If, at outcome (u, u) [at payoff vector u], there is a pair (w, f) €
W x F such thatu,, +uy < v(w, f), then w and f have an incentive
to form a couple in order to obtain a higher payoff. Then, (w, f) is
a blocking pair for outcome (u, u) [for payoff vector u] that creates
the blocking surplus v(w, f) — u, — uy > 0. Throughout this
article we will use weak blocking, i.e., the blocking pair divides the
blocking surplus such that both agents are weakly better off and at
least one of them is strictly better off. Note that when any blocking
pair matches, were they to randomly allocate the blocking surplus
between them, they would both strictly gain in expectation.

An outcome (i, u) [a payoff vector u] is (core) stable if no
blocking pairs exist, that is, for all (w,f) € W x F, we have
Uy + ur > v(w, f). Let (W, F, v) denote the set of (core) stable
outcomes.

4. Blocking paths to stability

A path (for assignment problem (W, F, v)) is a sequence of
outcomes (1!, u"), ..., (u¥, u*) suchthatforalll € {1, ..., k—1},
the outcome (u'*1, u'*1) is obtained from (!, u') by matching a
pair (i, ji) € P(W, F). This induces the matching u'*’

j( ifx = i],
I+1 _ i ifx :jl,
WU =% it iy jrandx e (1), 16,
w'(x) otherwise

and the payoff vector u'*!

uif] ifx =i,
AR ,
g = s ifx=gi,
x . .. 13 [P
0 ifx # i, jrand x € {p (ip), w (n},
ul  otherwise
such that ui*' + uf™ = v(i.j) ifii # jand ui = Ut =

0 otherwise. Thus, at outcome (u!t!, u'*!), agents i, and j; are
matched and generate value v (i}, j;), their former partners (unless
i; and j; were matched to each other already) are single and receive
zero payoffs, and all the other agents are matched to the same
partners and obtain the same payoffs as before.

A blocking path (for assignment problem (W, F, v)) is a path
(u',ub), ..., (u*, u*) such that for all | € {1,...,k — 1}, the
outcome (u't!, u*1!) is obtained from (!, u') by matching a
blocking pair (wy, f) € W x F for (1!, u') and their payoffs are
u’wﬁl > u’w’ and u}l“ > u}l with at least one strict inequality, i.e., the
blocking pair (wy, f;) splits their blocking surplus such that each
of them is weakly better off and at least one of them is strictly
better off at outcome (u'*!, u™*1). In words, a blocking path is a
finite sequence of outcomes at every step of which two agents pair
up, breaking with any existing partners, and sharing surplus so that
neither agent is worse off and at least one is better off. We say thata
blocking path leads to stability if the last outcome (u*, u*) is stable.
Note that we are using weak blocking in our definition of a blocking
path.
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Various recent papers (Chen et al., 2012; Bir¢ et al., 2013; Klaus
and Payot, forthcoming; Nax et al., 2013) have proven that for any
assignment problem and from any unstable outcome, a path to
stability exists.

Theorem 1 (Paths to Stability). Let (W, F, v) be an assignment
problem and (., u) be an outcome. Then, there exists a blocking path
(w,u) = (u',uh), ..., (uk, ub) that leads to stability, i.e., (u*, u®)
is stable.

Let outcome (ji, 1) be obtained from outcome (u,u) by
matching the pair (w, f) € W x F. Then, we say an error has been
made if (w, u), (i, @) is not a blocking path. We say that agent w
made a 1-error if &i,, = u,, — 1. Similarly, we say that agent f made
a I-error if iy = uy — 1.

We say that outcome (i1, i) is payoff closer to outcome (u’, u')
than outcome (u, u) is, if and only if foralli € W UF, | u} — ii; |<|
u; — u; | with strict inequality for at least onei € W UF.

Take any assignment problem and any two stable outcomes
(i, u) and (u/, u") with different payoffs. The next result shows
that, starting from (i, u), following a single 1-error, there is a path
to stability to some stable outcome (u, u), which is payoff closer
to (u/, u') than (u, u) was. Note that outcome (i, i) has the same
matching as the initial outcome (u, u). That is, we can attain a
new stable outcome which is payoff closer to a target outcome and
retain the original matching.

Theorem 2 (Moving Closer I). Let (W,F,v) be an assignment
problem and (w, u), (u', u’) € (W, F, v) with u # u'. Then, there
exists a path (., u), (u, i), (u', u"), ..., (u, ) such that

(i) outcome (uw, i) is obtained from (w, u) by (re)matching a pair

(w, f) € w such that either worker w or firm f makes a 1-error,

(i) (u, ), (u', ub), ..., (u* u*), (u, ) is a blocking path that
leads to stability, and

(iii) (stable) outcome (., 1) is payoff closer to (u’, u) than (u, u) is.

We prove Theorem 2 in the Appendix. Loosely speaking, the
proof works as follows. Let (u, u) be the starting stable outcome
and (i, u") be the target stable outcome. Then, we first let a
matched pair (w, f) change their payoff such that they make a
1-error that brings them payoff closer to u'. Assume that being
payoff closer to u’ requires the 1-error to be such that the worker
loses one unit of payoff and the firm gains one unit of payoff. We
then show how this can trigger a blocking path where more and
more worker-firm pairs are first unmatched and then rematched
to receive payoffs such that the worker loses one unit of payoff and
the firm gains one unit of payoff (and this is payoff closer to u’). This
unmatch and rematch procedure stops at an outcome (u, i) that
is stable and payoff closer to the target stable outcome (u/, u').

Given two matchings u, u’, let m(u, ') denote the number of
agents that have the same partner under p and p/, i.e, m(u, ') =
{i € N wu(@ = w'@)}]. Interpreting m(-, -) as quantifying
the similarity of two matchings, we say outcome (i, u) is match
closer to outcome (u/, u’) than outcome (w, u) is, if and only if
m(u', 1) > m(u', w).

In Theorem 2 we showed how to move to a stable outcome that
has the same underlying optimal matching as the starting stable
outcome and a payoff vector closer to that of the target stable
outcome. The next result performs the opposite trick, showing that
(in the absence of matched pairs which do not create value) we can
move to a stable outcome that has the same payoff vector as the
starting stable outcome and an optimal matching closer to that of
the target stable outcome.

Theorem 3 (Moving Closer II). Let (W,F,v) be an assignment
problem and (u, u), (W', u) € $(W, F, v) with © # u' and u such
that for all i # (), uj+u,u > 0and foralli # w' (i), ui+u,vg >
0. Then, there exists a path (u, u), (u, ), (u', u'), ..., (ix, u) such
that

(i) outcome (i, i1) is obtained from (i, u) by (re)matching a pair

(w, f) € w such that either worker w or firm f makes a 1-error,

(i) (u, ), (u',uY), ..., (@,u) is a blocking path that leads to
stability, and

(iii) (stable) outcome (1, u) is match closer to (i4', u) than (u, u) is.

We prove Theorem 3 in the Appendix. Loosely speaking, the
proof works as follows. Let (u, u) be the starting stable outcome
and (x4, u) be the target stable outcome. Take pair (w, f) which is
matched in p but not in u'. Let (w, f) change their payoffs such
that they make a 1-error such that, without loss of generality, the
worker loses one unit of payoff and the firm gains one unit of
payoff. We then show how this can trigger a blocking path where
more and more worker-firm pairs are unmatched from their p-
partners and rematched with their partners according to the target
optimal matching w’. When agents rematch they obtain their
original payoffs given by u. This unmatch and rematch procedure
stops at an outcome (i, u) that is stable and match closer to the
target stable outcome (u’, u). Note that agents which have the
same partner in every optimal matching are never required to
make errors as part of this proof. This fact is later used in the proof
of Theorem 6.

Theorems 2 and 3 will help us to prove results on stochastic
stability, but it is also of independent interest that small
adjustments to the payoff shares of a matched pair are sufficient
to move across the set of stable outcomes, and that payoffs and
matchings can be adjusted independently of one another.

5. Stochastic stability

Similarly to the close relationship between Nash equilibrium
and best response dynamics, the concept of pairwise stability in
matching problems gives rise to a dynamic process in a very natural
way. This has long been recognized in the literature on paths to
stability in NTU matching problems (Roth and Vande Vate, 1990;
Diamantoudi et al., 2004; Klaus and Klijn, 2007; Kojima and Unver,
2008). The difference for TU problems such as the assignment
game is that when a pair matches, they must choose how surplus
is shared. To ensure consistency with the definition of pairwise
stability under weak blocking, it must be that surplus is shared so
that neither of the agents in the pair loses payoff and at least one
of the agents gains payoff (Chen et al., 2012; Bir6 et al., 2013; Nax
etal., 2013).

5.1. The unperturbed blocking dynamics and absorbing outcomes

For each assignment problem (W, F, v), we model the unper-
turbed blocking dynamics by a Markov process (O, T), where the
state space is the set of outcomes @ and T is a transition matrix that
induces the following unperturbed blocking dynamics. First, we shall
need some notation. By o € 0, 0 = (u, u), we will denote a repre-
sentative outcome.

Next, define the set of outcomes that can be obtained from
outcome o by matching (i,j) € P(W, F), no matter how value
is shared by i and j after they match, by A(o,1i,j) := {0’ € O |
o’ is obtained from o by matching (i, j)}. Recall that possibly i = j
(in which case u} = 0).

Then, denote by B(o,i,j) < A(o,1i,j) the set of outcomes
obtainable from outcome o via weak blocking by (i, j) € P(W, F).
Given our assumption of nonnegative payoffs, a single agent can
never weakly block, so if i = j, then B(o,i,j) = #. Wheni # j,
payoffs of outcomes in B(o, i, j) are such that i and j are weakly
better off than they are at outcome o, and at least one member of
the blocking pair is strictly better off. B(o, i,j) := {0’ = (u/, ') €
Ao, i, J) | uj > w;, u; > wj, and u;+u; > u; +u;}. Note that if (i, j)
is not a blocking pair for outcome o, then B(o, i, j) is empty.
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In each period t = 1,2,..., the process is at an outcome
o' = (u,u) € 0O.Apair (i,j) € P(W,F) of agents (possibly
i = j) is randomly selected from a distribution with probabil-
ity mass function g(-) and full support on P(W, F). Let o’ be cho-
sen randomly from a distribution with probability mass function
hat ij) (+) and full support on A(0', i,)). Let

’

0

of+] — ;
(0]

Note that o*! = o implies that o'*! is obtained from outcome of
via weak blocking by a blocking pair (i, j) € W xF.Ifo’ & B(0', i, ),
then o'*t! = o’. If (i, j) is not a blocking pair for outcome o, then
it must be that o’ & B(0', i, j) as B(0', i, j) is the empty set. The dy-
namics as defined above will always follow a blocking path. More-
over, starting from any outcome o, as any (i, j) € P(W, F) has pos-
itive probability of being chosen, and has positive probability of
moving the process to any outcome in B(o, i, j), it must be that any
(finite) blocking path starting from o has positive probability of be-
ing followed by the dynamics.

For two outcomes o0, 0’ € O, let T(o, 0’) denote the probability
that the process moves from outcome o to o’ from one period
to the next. Similarly, let T'(o, 0’) denote the I-period transition
probability, the probability that o™ = o’ conditional on o' = o.
Note that for two outcomes 0,0 € @,0 # o and T(0,0’) > 0
if and only if outcome o’ is obtained from o via weak blocking.
Similarly, for each I € N, T'(0, 0’) > 0 if and only if there exists a
blocking path of at most length [ from o to o’. For a set of outcomes
0 C 0, define T'(0,0) := Y ,.,T'(0,0). Note that for any
0€0,T(0,0)=1.

Note that blocking pairs who weakly block are always better
off in the short run (even though they might be worse off later).
That is, agents are myopic but they do not make mistakes. We will
consider a dynamic process with a positive probability of errors (or
mistakes, or perturbations) in Section 5.2. For further reference we
therefore label the blocking process as defined in this section as
the unperturbed blocking dynamics. The following theorem, which
corresponds to Theorem 1 of Nax et al. (2013), shows that (i) every
stable outcome is an absorbing state of the unperturbed blocking
dynamics, and that (ii) from any starting point, the unperturbed
blocking dynamics will converge to one of the stable outcomes in
finite time with probability 1.

ifo’ € B(0", i, ),
otherwise.

Theorem 4 (Stability with Probability 1). Let (W,F,v) be an
assignment problem. Then,

(i) forallo € (W, F,v),T(0o,0) = 1and
(ii) forallo € ©, T'(o, (W, F,v)) — 1asl — oo.

The proof is simple (see Appendix). Part (i) holds as by the
definition of a stable outcome, there are no blocking pairs for any
o € 4(W,F,v), so o must be an absorbing state. For part (ii),
Theorem 1 shows that from any o € O, there exists a blocking path
to a stable outcome. Under the unperturbed blocking dynamics,
these paths occur with positive probability. Since there are a finite
number of states, the probability of such a path being followed
is bounded below uniformly for all states. Therefore such a path
will eventually be followed and the process will end up at a stable
outcome. Note that this argument implies that the probability
of not being at a stable state approaches zero at an exponential
rate. Further note that Theorem 4 holds independently of g(-) and
hac.,..y (), as long as the full support assumptions are satisfied.

5.2. The perturbed blocking dynamics

When dealing with adaptive dynamics such as the one detailed
above, it is common to consider perturbed variants of the process.

The addition of perturbations can enable something to be said
about the long term behavior of the process, regardless of initial
conditions (Young, 1993). These perturbations can be considered
as ‘mistakes’ made by agents. For example, two agents could form
a couple and share surplus in such a way that one or both of them
obtain a lower payoff than they did previously. The vast majority
of the literature on perturbed adaptive dynamics in economics
uses one of two types of error specification. Under uniform error
specifications (Young, 1993), agents make mistakes and take payoff
reducing actions with some uniform probability. Under payoff-
dependent specifications, payoff reducing actions by an agent
occur with a probability that is decreasing in his loss of payoff
from taking the action in question. The most common form of
payoff-dependence is the logit error specification (Blume, 1993),
under which the probability of an error is log-linear in payoff
loss. Other specifications such as probit (Myatt and Wallace, 2003;
Dokumaci and Sandholm, 2011) are occasionally also considered.
The logit and probit error specifications need not be considered to
model mistakes, and can instead be considered as modeling the
behavior of agents whose utility is subject to idiosyncratic payoff
shocks (which follow extreme value and normal distributions
respectively). Several papers have recently argued that coalitional
behavior should be considered in models of perturbed adaptive
dynamics. Newton (2012a) incorporates coalitional behavior into
error processes, Newton (2012b) incorporates coalitional behavior
into the unperturbed dynamic, and Sawa (2014) does both.
Coalitional behavior is already an integral part of matching
dynamics, as pairs constitute coalitions of size two.

Here, we start by examining two models of errors: a model
with uniform errors and a model in which errors have a small
amount of payoff dependence. It is then shown that results from
these two cases extend to a large class of error models (weakly
payoff monotone errors) that includes uniform and log-linear
specifications.

Formally, the perturbed blocking dynamics is identical to
the unperturbed blocking dynamics except that there is some
probability of state transitions which are not based on weak
blocking: following the selection of 0’ according to hyt ; ;,(-), let

ot+1 — o' with probability PG
o' otherwise.

The cost function c(; (0, 0’) takes values on R, and measures
the relative decay of the probabilities of various transitions in
terms of an ‘error’ parameter ¢. The more rare a transition is, the
higher its cost. The cost function is set to zero for transitions that
can occur under the unperturbed blocking dynamics. As £ = 1,
the probability of transitions caused by weak blocking does not
decay as ¢ — 0. The cost is positive for transitions which cannot
occur under the unperturbed blocking dynamics. We refer to such
transitions as errors. If a transition from o to o’ is induced by
(i,j) € P(W,F) and c(j(0,0) > 0, then we say that (i, j) has
made an error. More specifically, (i,j) € P(W, F) makes an error
if, following the transition, the payoffs of all k € {i,j} are not
weakly higher with at least some k € {i, j} having a strictly higher
payoff. Note that the process for ¢ = 0 is the unperturbed blocking
dynamics. Let T!(-, -), ] € N, denote the transition probabilities
associated with the perturbed blocking dynamics.

Possible errors include an agent accepting a lower payoff while
remaining matched to the same partner, an agent leaving his
current partner and matching with himself, an agent matching
with a new partner and losing payoff, and an agent matching with
a new partner without either of the parties gaining payoff. In short,
an error is any transition by an agent or pair of agents that is not
the result of a weak blocking. The results of this section shall only
require errors that result in small or no loss in payoff for the erring
agent or agents. However, this is not an assumption on the range
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of possible errors, but rather follows from Theorems 2 and 3, and
the later Lemma 1.7

Note that for ¢ > 0, the perturbed blocking dynamics is
irreducible and ergodic and therefore has a unique stationary
distribution 7, (-). By well known arguments (see Young, 1998), as
& — 0, the limiting distribution 7, (-) — m(-) exists and places all
probability mass on recurrent classes of the process with ¢ = 0.
We know from Theorem 4 that these must be stable outcomes
of the unperturbed blocking dynamics. The set of outcomes with
positive measure under 7 (-) is important, as for small enough
perturbations, on a long enough timescale, the perturbed blocking
dynamics will be found at such outcomes with a probability close
to 1. Therefore, the identity of these stochastically stable outcomes
is important to understand the long run behavior of the perturbed
blocking dynamics. The stochastically stable outcomes are

$8(W,F,v,c):={o€ O |n(o) > 0}.

The identity of the stochastically stable outcomes can be
expected to, and indeed does, depend on the cost functions
¢(,» (-, ). Therefore it is crucial that c(. (-, -) is such that error
probabilities are plausible. As noted above, our results cover a
wide class of error specifications, including those most popular in
the literature. To show this, we first give results for two specific
specifications found in the literature, before showing that results
for these two specifications extend to a broader class. To begin, we
shall analyze the process with uniform errors.

Definition 1 (Uniform Errors). An error process is uniform if, for all
0€0,(ij) € P(W,F),0 €A,i,j),

0 ifo’ =oo0ro €Bo,i,j),
Cij(0,0) = i1 otherwise.

Under a uniform error process, any error occurs with the same
(order of ¢) probability. The following theorem shows that when
errors are uniform, the set of stochastically stable outcomes and
the set of stable outcomes coincide. Stochastic stability does not
provide any further selection beyond that already provided by the
stability concept. Moreover, the proof of the theorem only relies on
two types of errors: 1-errors and errors where agents earning zero
either match or unmatch amongst themselves. Therefore, errors
which cause a large payoff loss to the agents who make them are
not necessary to obtain this no-selection result: the entire set of
stable states is traversed by low payoff-loss mistakes.?

Theorem 5 (No Selection With Uniform Errors). If the error process is
uniform, then $8(W,F,v,c) = (W, F, v).

To prove the theorem some more notation is needed. Let the set
of outcomes reachable in a single step from o be denoted by

A(0) == U

(i.j)eP(W,F)

Ao, 1, J).

If there are multiple ways of moving from o to o’ in a single step,
we are interested in the lowest cost way of doing so. Note that
there will only ever be multiple ways of moving from o to o’ in a

7 This is in contrast to Nax and Pradelski (2015), who, when the process is at a
stable outcome, in effect disallow errors that do not reach an outcome that is weakly
blocked. That is, errors must be large enough to cause the break up of some existing
partnership — errors which cause small shifts in surplus sharing between partners
are not allowed.

8 A corollary of the proof of Theorem 5 is that the mixing time for this perturbed
process is O(¢g). The reason for this is that all of the important transitions between
stable states are of order ¢, and there do not exist more probable transitions away
from any stable state.

single step if the transition involves two agents who are matched
to one another in o separating to become singles in o’. The cost
of separation will in general be different depending on which of
the agents initiates the separation. Under uniform errors, the cost
will be the same, but this will not necessarily hold for other error
specifications. With this in mind, define

: / : /
~min  cj (o, o) ifo € A(o),
/ (i,j)eP(W,F):
c(0,0) = o’ €A(0,i,j)
00 otherwise.

In order to determine stochastically stable outcomes, we will
also be interested in the overall cost of moving between any two
states. In a same way that the cost function measures the rarity
of one period transitions between states, overall cost measures
the rarity of transitions between two states over any number of
periods. Let £ (o, 0') be the set of finite sequences of outcomes
{o',0%,...,0"} such that T € N,,0' = o0,0' = 0o and for
t =1,...,T — 1,0 e A(o"). Define and denote the overall
cost of moving from o to o’ by

T-1

C(0,0) := min Zc(ot, 0

1 T /
{ol,..., o' }eP(0,0") —1

[+1)

With the concept of overall cost in hand, we can use the classic
characterization results of Freidlin and Wentzell (1984) and Young
(1993). A o-tree is a directed graph on 8(W, F, v) such that every
vertex except for o has outdegree 1 and the graph has no cycles.
For two outcomes o’,0” € 8(W,F,v),0 — 0’ denotes the
directed edge from o’ to 0”. Let (o) denote the set of all o-trees.
For g € 4(0), define

Vg = Y  C0,0") and Vpn(0) = min V(g).
g€g(0)

(o/—0")eg

That s, V(g) is the sum of the overall costs of all the edges in the
tree g, and Vy,in (0) is the total cost of the least cost o-tree. Define
the set of outcomes at which least cost o-trees are rooted by

Lmin={0o€ SW,F,v) |oe€arg min Vy;,(0)}.
oe$(W,F,v)

We know from Freidlin and Wentzell (1984) and Young (1993) that
an outcome is stochastically stable if and only if it is associated with
a least cost o-tree:

o€ 88(W,F,v,c) & 0 € Lpyin-

Theorem 5 can now be proved. The argument relies on tree
pruning. Starting from any o-tree rooted at a stochastically stable
outcome o, given any stable outcome 0, a new tree is constructed
by adding and deleting edges from the o-tree, so that it becomes a
o-tree. Using the results of Theorems 2 and 3 on the unperturbed
blocking dynamics, the o-tree is constructed in such a way that
Vinin(0) < Vinin(0). This means that if o € £, then it must be that
0 is also in £,;,. That is, if 0 is stochastically stable, 0 must also be.
As this holds for any 6 € (W, F, v), every outcome in 8(W, F, v)
must be stochastically stable. The details of this proof are given in
the Appendix.

The intuition behind the proof of Theorem 5 is that, from any
stable outcome, any other stable outcome can be reached via a
transition path on which other stable outcomes act as stepping
stones. Moving from one stepping stone to the next only ever
requires a single error (Theorems 2 and 3). In this sense, getting
to any given stable outcome from anywhere else in the state space
is never more difficult than getting to any other stable outcome.
In the terminology of Noldeke and Samuelson (1993), the set of
all stable outcomes forms a mutation connected component. Thus,
no stable outcome is any more stable to perturbations than any
other stable outcome, and the set of stochastically stable outcomes
equals the set of stable outcomes.
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Having shown a no-selection result for uniform errors, we
move to payoff-dependent errors. This paper uses weak blocking
dynamics, so if two agents match such that each has the same
payoff as in the previous period then this is an error and not part
of the unperturbed blocking dynamic. We analyze the case for
which there is a distinction between errors which cause payoff
loss to the erring agents, and errors which do not. The latter
are referred to by Serrano and Volij (2008) as ‘indifference-based
coalitional mistakes’. Later, we shall see that results derived for this
formulation easily extend to a large class of error processes.

Definition 2 (Stepped Errors). An error process is stepped if, for all
0= (u,u), (i,j) € P(W,F), 0" = (u,u') € Ao, 1,)),

0 ifo’ =o0o0ro € B(o,1,J),
’
cijy(0,0) =11 {Qﬁﬁ(”k u) > 0,
8, 0<éd <1 otherwise.

The question arises as to whether under stepped errors it is
still the case that §8(W, F, v,c) = (W, F, v). The answer is no.
Although trees can still be constructed using 1-errors, there now
exists an error which is lower cost than a 1-error: precisely those
errors which lead to zero payoff loss for the erring agents. We refer
to such errors as 0-errors. These errors have a cost of § under the
stepped error process.

Definition 3 (0-errors). If o = (u, u), 0’ = (u/,u'),0 # o, (i,j) €
P(W,F),0" € A(o,1i,j),0 & B(o,1i,j),u; = ui,u]f = u;, then we
refer to a transition from o to 0" as a 0-error.

Example 1 (0-errors by Individuals). Let W = {w},F = {fi},
v(w1, f1) = 10.There is a unique optimal matching at which w1, f;
are matched, and an outcome is stable if and only if u,,, +-ur, = 10.
From any stable outcome such that u,,, u;, > 0, all errors lead
to some agent losing payoff, so no 0-errors are possible. However,
from the stable outcome at which u,,, = 0, uy, = 10, there exists a
transition in which w leaves f; to become single. Such a transition
is not a weak blocking, but does not decrease the payoff of w;. Such
a transition is a 0-error. [

Example 2 (0-errors by Pairs). Let W = {wq, w2}, F = {fi},
v(wq, fi) = v(wy,fi) = 10. There are two optimal matchings
at which f; is matched to wy and w-, respectively, and all stable
outcomes have u,,, = 0,u,, = 0,u;; = 10. From the stable
outcome at which wy and f; are matched, there exists a transition
in which w, matches with f; to obtain payoffs of u,,, = 0, us, = 10.
Such a transition is not a weak blocking, but does not decrease the
payoff of w, or fi. Such a transition is a 0-error. O

It turns out that for agents who have different partners in
different optimal matchings, 0-errors suffice to move the process
to any stable payoff. However, for pairs of agents which remain
matched in every optimal matching, it may be the case that 0-
errors suffice to move from some stable payoffs but not from
others. This is illustrated in the following example.

Example 3 (Selection with Stepped Errors: See Fig. 1). Let W =
{wq, wy, w3}, F = {f1, f2, f3}, and value function v is such that
fori,j € {12}, v(wi,f) = 20,v(wi,f3) = v(wz,f3) =
0, v(ws, f1) = 0, v(ws, f2) = 4, and v(ws, f3) = 10. Then vectors
of lowest and highest payoffs at stable outcomes are given by u,,, =
up = (0,0,0), uw = ur = (20, 20, 10). At any optimal matching
W, w1, wo, f1, f» are matched amongst themselves and ws, f3 are
matched. Furthermore, at any stable outcome (, u), payoffs u are
such that for i,j € {1, 2}, u,, + up = 20, uy, + up = 10, and
Uy, +Up, > 4.

From a stable outcome (u, u), if u, = 0 there is a 0-error in
which f, becomes single. If ur, > 0, there is a 0-error in which f,
matches withi € {wq, w,}, i # wu(fz). Thatis, f, and i match with
one another but both receive the same payoff as before. Following
this, there is a weak blocking possible between i and w (i) = f;.In
either case, f; is left single. If u,,, < 4 then w3 and f, can block.
Following this, i (f,) and f, can block. So w3 and f; are left single
and can rematch at any allocation of surplus such that u,,, +us, =
10. w1, wo, f1, f» can then rematch amongst themselves at payoffs
such that the new outcome is stable. 0-errors are all that is required
to move to different stable payoffs for ws, f3. This is because the
partnership of ws and f; can be disrupted by the activities of the
other agents, even though neither ws nor f3 is linked to any of the
other agents in any optimal matching. However, if u,,, > 4, even
when f; is single there is no blocking possible between w3 and f;.
Without either ws or f; making an error, there is no way in which
the payoffs of these agents can change. The lowest cost such error
is a 1-error.

So from any stable outcome in which u,,, < 4, a stable outcome
in which u,,, > 4 can be reached with cost §. From any stable
outcome in which u,,, > 4, any stable outcome in which u,,, takes
a different value can only be reached with cost at least 1. Therefore
(u,u) € $8(W,F, v, c) implies u,,, > 4.In fact, $8(W,F, v, c) is
precisely the set of outcomes in §(W, F, v) for which u,,, > 4.This
follows from the fact that from any of these outcomes any different
stable payoffs and matching for wq, wy, fi, f> can be reached via
a single O-error, and any different stable payoffs for ws, f3 can be
reached via a single 1-error. O

The intuition behind Example 3 is that the bargaining position
of ws is improved due to the latent outside option provided by
a potential pairing with f,. Although the constraint v(ws, ;) >
4 is not binding at every core outcome, it becomes relevant
at intermediate matchings between core outcomes, facilitating
transitions which increase the payoff of w; from values below 4.
Another insight that is gained from considering Example 3 is that
if 0-errors were costless, then core convergence would no longer
apply in cases where there exist multiple optimal matchings.’

We define the set of agents who have different partners at some
stable outcomes by

Ap = {i € N | there exist (u, u), (1, ") € 8(W,F, v)
such that w(i) # w'(i)}.

The following lemma shows that for any given agent who has
different partners at some stable outcomes and who earns a strictly
positive payoff at the current outcome, we can replicate a 1-error
with a 0-error. That is, for i € Ag with u; > 0, there exist a 0-
error and a subsequent sequence of costless transitions such that
the outcome at the end of the sequence is that which could have
been achieved had agent i made a 1-error at the initial outcome.
Note that u; > 0 implies that (i) # i.

Lemma 1 (Stepped Errors: Replication of 1-errors by 0-errors). Let
(u,u) € 8(W,F,v) be such that for all j # (), uj + u,g > 0.
Leti € Ag,u; > 0. Let (u,u’) be such that u} = ujforalj &

{i, D), 4] = 1= 1,1, =+ 1. Then C((1, w), (2, 1) =&,

We illustrate the proof of Lemma 1 with the example in Fig. 1.
Assume some stable outcome (u,u) € 4$(W,F,v) such that
wwy) = fi,u(wz) = fo, and uy, > 0. As wy and f; are

9 Although the existence of multiple optimal matchings is non-generic for
continuous payoffs and in some sense unusual when payoffs are discrete, we do not
emphasize this as it is easy to envisage plausible situations with multiple optimal
matchings. For example, two sellers with identical outside options matching with
a single buyer. The case of a unique optimal matching is dealt with in Theorem 7.
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Fig. 1. Aline between agents w;, fj indicates that v(wy, f;) > 0, with the value given
above the line. Solid lines indicate pairings that can arise in some optimal matching.

partners in some other optimal matching, it must be the case that
Uy, +Up, = v(wy, f1). Then, there exists a 0-error whereby w, and
f1 leave their current partners and match at the same payoffs as
they currently obtain. Following this, w; and f, are left single and
obtain zero payoffs. For this outcome, w4 and f; are a blocking pair
and can costlessly rematch to obtain payoffs u,,, — 1 and uy, + 1
respectively. w, and f, are now single and can rematch at their
original payoffs. The process is now at the outcome which would
have been obtained had w; made a 1-error from the initial outcome
(u, u). A 1-error by w has been replicated by a 0-error.

Lemma 1 shows that for agents who have multiple partners at
some optimal matchings, 1-errors can be replicated by 0-errors.
Theorem 3 shows that 1-errors suffice to move between different
optimal matchings. Recall that the proof of the theorem does not
require errors by i ¢ Ap, who remain with the same partner.
Therefore, any optimal matching can be reached via transitions
between outcomes in §(W, F, v) which each involve only a single
0-error. Theorem 2 shows that 1-errors suffice to move between
different stable payoff vectors. Replicating these errors by 0-errors
fori € Ag, we see that any stable payoffs for i € Ag can be
reached via transitions between outcomes in §(W, F, v) which
each involve only a single O-error. The existence of these paths
of transition implies that if the initial outcome is the root of a
least cost o-tree and thus stochastically stable, then the outcome
reached by these paths is also the root of a least cost o-tree, and is
therefore also stochastically stable. In summary, given any stable
outcome o, there exists a stochastically stable outcome at which
any agent with multiple optimal partners has the same partner and
payoff as in outcome o.

Theorem 6 (Stepped Errors: No Selection for Agents with Multiple
Optimal Partners). If the error process is stepped, then for all (i1, il) €
S(W,F,v), there exists (i1, u*) € 88(W,F, v, c) such that for all
ie Ag, u;“ = ﬁ,‘.

An immediate consequence of Theorem 6 is that if every agent
either has differing optimal partners, or is single in every optimal
matching, then the entire set of stable outcomes can be traversed
by 0-errors, and the entire set of stable outcomes is stochastically
stable. Defining the set of agents who are single in every optimal
matching

={ieWUF: u(i)=iforall (u,u) € $(W,F,v)}

we can state the following no-selection result.

Corollary 1. If AqUI" = WUF, then 8(W, F, v, ¢) = 8(W, F, v).

In summary, any agent who is single at every optimal matching
is single and obtains a payoff of zero at any stable outcome. Any
agent who has different optimal partners can always have their
partnership at a stable outcome broken by a O-error, following
which another stable outcome can be reached at which the agent’s
payoff or partner differs. Sequences of such transitions in which
each step involves a single 0-error can move the process between

any partner-payoff combinations that the agent has at any stable
outcome. Therefore, if all agents are either always single or have
multiple optimal partners, getting to any given stable outcome
from anywhere else in the state space is never more difficult than
getting to any other stable outcome, so all stable outcomes are
stochastically stable.

We saw in Example 3 that if there exist agents who have a
unique partner in all optimal matchings, then the influence of a
latent outside option may lead to the set of stochastically stable
outcomes being a strict subset of the set of stable outcomes. This
strict selection in Example 3 was due to the latent outside option
provided to ws by a potential matching with f, being strong enough
to destabilize some of the stable payoffs of ws, but not all of them.
If the example is adjusted slightly so that the latent outside option
can destabilize any stable payoff of w3, then no-selection is again
obtained.

Example 4 (No Selection with Stepped Errors). In Example 3, we
have $8(W,F,v,c) & 4&(W,F,v). However, if we alter the
example by letting v'(ws, f3) = 3 and v'(wj, f;) = v(wy, f;) for all
(wy, fj) # (ws, f3), then $8(W, F, V', c) = (W, F, v'). This is due
to the fact that ws and f; are still matched at any stable matching,
but no matter how they divide the surplus of 3 between them, their
partnership can still be broken up if f, becomes single, as f, can
then weakly block with ws at payoffs u,,, = 4, ur, = 0. As we saw
in Example 3, it only takes a O-error to cause f, to become single,
so all possible payoff combinations can be traversed by means of
0-errors, and all stable outcomes are stochastically stable. O

Now, consider the case that Aqg = ¢. That is, there is a unique
optimal matching p and every agent has the same partner at any
stable outcome. Consider two stable outcomes 0 = (i, u), 0’ =
(w,u") € (W, F, v).Let (u, u) be such that there exists a 0-error.
Let (i, u') be such that there exists no 0-error. The existence of a 0-
error for (u, u) implies that there exists (i, j) € P(W, F) such that
(i) # jand Zkew} U = v(i, j). It must be that u} > u; and/or

u]f > uj, or the same O-error would exist from outcome (u, u’).

Assume u; > u;. This implies that p(i) # i [by Lemma 2(a) in the
Appendix]. From (u, u), following a 0-error by (i, j), let i rematch
with p(i) at payoffs u; + 1, u,; — 1 respectively [these payoffs
must be possible as (u, u’) is an outcome and u; > u;]. Then, if
w(j) # Jj, letj rematch with . (j) at payoffs u;, u,, [it must be that
v(j, u(j)) > 0asif v(j, u(j)) = 0 then the matching obtained by
unmatching j and w(j) in « would be optimal, contradicting there
being a unique optimal matching]. The resultant outcome is the
outcome that would have been obtained from (u, u) had (i) made
a 1-error. The resultant outcome is also payoff-closer to (u, u')
than is (u, u). Therefore by Theorem 2 there exists a costless path
of the dynamic to some outcome in §(W, F, v). In this manner,
an o’-tree can be constructed for which any edge exiting a given
outcome has the least cost of any such possible edge, using 0-errors
where possible, and otherwise using 1-errors. Any tree rooted at
an outcome such as o must have a higher cost as the least cost of
any edge exiting o is §, whereas the least cost of any edge exiting
o’ would be 1. Therefore, an outcome is stochastically stable if and
only if there is no 0-error possible. We have obtained an almost-
no-selection result. Let Y C (W, F, v) denote the interior of the
set of stable states. That is, a stable outcome is in Y if and only if the
value function inequality holds strictly for all pairs of agents who
are not matched to one another.

Y = {(n.u) € 8(W,F,v) | (i,j) e P(W,F)

and pu(i) # jimplies Y > v(i.j) {.
keli,j}
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Theorem 7. If the error process is stepped, Ao = @ and Y # (J, then
88(W,F,v,c) =Y.

Note that for the non-discretized problem, a unique optimal
matching implies that every agent on at least one side of the
market has multiple possible core stable payoffs and that the set
of stable outcomes has dimension equal to the number of agents
on that side of the market (Ntfiez and Rafels, 2008). Therefore for
a discretization which is fine enough relative to the value function,
Ao = ¢ implies that Y # ¢} and the second condition in the
statement of Theorem 7 is redundant.

Example 5. Consider Example 3 amended so that v(wy, f,) = 18.
After this change there is a unique optimal matching in which
w1 is matched to f1, w, to f>, and w3 to f3. Every stable outcome
must now satisfy 0 < up, — ur, < 2.If a stable outcome is such
that u;, — ur, = 0, then by substitution u;, — (20 — u,,) = 0,
giving uy, + u,, = 20. That is, the outcome cannot be in Y, as
the value function constraint for f; and w, holds with equality. If
a stable outcome is such that u;, — ur, = 2, then by substitution
(20 — uy,) — uy, = 2, giving uy, + u,,, = 18. That is, the outcome
cannot be in Y, as the value function constraint for f, and w, holds
with equality. Therefore, at any outcome in Y, and therefore at any
stochastically stable outcome, it must be that uy, —up, = 1. O

5.3. Generalization

The results of the paper so far have only depended on two types
of errors, namely O-errors and 1-errors. This fact can be used to
state results for a much broader class of error processes than those
considered so far.

Definition 4 (Weakly Payoff Monotone Errors). An error process

is weakly payoff monotone if, for all 0 = (u,u),(@G,j) €
P(W,F),0' = (1, u') € A0, i, j),
¢ij)(0,0)
0 ifo’ =ooro €B(o,1i,j),
otherwise,
gi((ui —up)y) ifi =7j,
S(W—u)y, W—u)y) ifizj

where g1 : Ny = Rit, & N(Z, — R, are non-decreasing,
g, is symmetric in its arguments, g;(0) = g,(0, 0), and g;(1) =
£(1,0).

That is, the transition cost of a mistake is a non-decreasing
function of payoff losses incurred by the agents (or agent) who
make the mistake. Also, the transition cost of a mistake in which
no agent loses payoff or only a single agent loses a unit of payoff is
the same whether the mistake is made by an agent on his own or
as part of a pair.

For this class of errors, the characterizations of the previous
sections apply. The reason for this is that none of the arguments
so far in the paper have relied on any perturbations other than 0-
errors and 1-errors. Moreover, any step between stable outcomes
in our arguments only requires a single error. Therefore, if other
errors have cost at least as high as that of 1-errors, they can be
ignored for the purposes of determining stochastic stability. Which
prior theorems apply depends on whether O-errors have equal cost
to, or strictly lower cost than, 1-errors.

Theorem 8 (Results for Weakly Payoff Monotone Errors). For any
weakly payoff monotone error process,

(i) if g1(0) = g(1), then Theorem 5 holds, and
(ii) if g1(0) < g1(1), then Theorems 6 and 7 hold.

Intuitively, as errors which lose a lot of payoff are (weakly) rarer
than errors which lose little payoff, the most common transition
paths between stable states will not include errors that cause
large payoff losses to the agent or agents making them. Consider a
move from one stable outcome to another stable outcome, possibly
across stepping stones of intermediate stable outcomes. There
exists such a sequence of transitions such that each step does
not require more than a 1-error; however, sometimes a 0-error
suffices. Therefore, results hinge on whether or not 1-errors are
more costly than 0-errors.

Example 6 (Logit Errors). Under logit errors, the cost of errors is
proportional to payoff loss. To specify the cost of logit errors by
pairs, the specification of Sawa (2014) can be used: the cost of
a transition in which both agents in a pair lose payoff is equal
to the sum of the losses.’To ensure strict positivity of mistake
costs, § must be added to the cost of every transition which is not
part of the unperturbed blocking dynamics. This is equivalent to
a formulation where a perturbation creates the opportunity for a
mistake, before the actions themselves are determined by the logit
choice rule.'" An error process is logit if, for all 0 = (i, u), (i,j) €

P(W,F), 0 = (i, u') € Ao, i, j),

0 ifo’=o0o0ro €B(o,1i,j),
cij(0,0) =18+ Z max{uy — u,, 0}, 8 > 0 otherwise.
kelij)
It can immediately be seen that this rule falls into category (ii) of
Theorem 8, and therefore Theorems 6 and 7 hold. O

Example 7. Consider an error process whereby, for all o =
(n,w), (i,j) € P(W,F), 0" = (i, u') € Ao, 1,)),

0 ifo’ =o0oro eB(o,i,j),

cij(0,0) = (max{u, — u,})! otherwise.
kefij}
Then, as thefactorial function is increasing and 0! = 1! = 1, this

rule falls into category (i) of Theorem 8, and therefore Theorem 5
holds. O

It is worth emphasizing that Theorem 8 is independent of the
exact functional form of g;(-) and g» (-) and that such independence
is unusual in pairwise dynamics. Recall that it is possible that an
error by a pair (i, j), i # j, involves both i and j incurring a payoff
loss. Consider two possible errors, an error by (w1, f1) such that
w1 loses payoff of 5 and f; loses payoff of 0, and an error by (w>, f5)
such that w, loses a payoff of 3 and f; loses a payoff of 3. Which
of these errors will have the lower cost depends on the functional
forms of g1 (-) and g>(-). The independence of Theorem 8 from these
functional forms is due to the fact that the least cost transitions on
which our results depend never involve errors in which more than
one of the protagonists loses payoff.'?

10 This s equivalent to saying that if one agent accepts a payoff reducing
rematching with probability e"' and the other agent accepts it with probability £,
then the probability of the rematching occurring is "1 +'2.

11 Specifically, starting from o = (u, u), a mistake occurs with probability &°,
following which, setting & = e~#, alternative outcome o’ = (i, u) is accepted
#. Taking limits
(k4P )

as ¢ — 0 and the product of the independent probabilities that a mistake will
occur and an alternative accepted by both i and j, we obtain c(j(0,0) = § +
Zke(m max({uy — u,, 0}. For more on coalitional choice under logit and probit rules,
see Sawa (2014) and Newton and Sawa (2015).

12 This is in contrast to NTU matching problems. In such problems least cost
transitions can involve errors in which two protagonists both lose payoff. Therefore,
even for weakly payoff monotone error processes, results in NTU problems do
depend on the exact functional form of g1 (-) and g, (-). See Section 4 of Newton and
Sawa (2015) for an example contrasting results for logit and probit choice rules.

independently by players k € {i,j} with probabilities
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6. Conclusion

This paper makes two distinct contributions. Firstly, itimproves
our knowledge of paths to stability in assignment games,
demonstrating that, following a small perturbation from any stable
outcome, there exists a path to stability that takes the process
closer to some target stable outcome. Moreover, this can be done
in such a way that payoffs change and the matching remains the
same (Theorem 2), or in such a way that the matching changes and
payoffs remain the same (Theorem 3). The second contribution of
the paper is to use these results to derive stochastic stability results
for a variety of perturbed blocking dynamics. Processes with
uniform errors (Theorem 5) and with stepped errors (Theorems 6
and 7) are analyzed, and a large class of perturbed processes is
shown to reduce to the two aforementioned cases (Theorem 8).

This paper joins a set of recent papers that have made significant
progress in understanding dynamic recontracting in assignment
games. However, it is still the case that such processes are
understood less well than their NTU equivalents, a research area
that has itself made considerable recent progress. A possible area
for future work would be the study of adaptive dynamics in many-
to-one and many-to-many bipartite trading networks, seeking to
establish TU analogues of recent results in the NTU literature.'*

Appendix

The following lemma explains that single agents always receive
their reservation value at a stable outcome and how optimal
matchings and stable payoffs are related.

Lemma 2 (Stability: Single Agents and Optimal Matchings).

(a) If an agent is single at a stable outcome, then at each stable
outcome, he receives his reservation value (Demange and Gale,
1985).

(b) If (w, u) is a stable outcome for assignment problem (W, F, v),
then u is an optimal matching for assignment problem (W, F, v)
(Roth and Sotomayor, 1990, Corollary 8.8).

(c) Let (u, u) be a stable outcome and ' be an optimal matching
for assignment problem (W, F, v). Then, (u', u) is a stable out-
come for assignment problem (W, F, v) (Roth and Sotomayor,
1990, Corollary 8.7).

Proof of Theorem 2. By statement of the theorem, (W, F, v) is an
assignment problem and (u, u), (1, u') € 8(W,F,v) withu # v’
((u, u) is the starting stable outcome and (u, u’) is the target
stable outcome). Hence, there exists i € W U F with u; # ug.
If for some w € W we have u,, > u}, (conversely, u,, < u,),
then by Lemma 2(a) we have u(w) = f € F. By Lemma 2(b), u
is an optimal matching, so by Lemma 2(c), (u, u) € (W, F, v).
Thus, u, + uf = u,, + u; = v(w, f). Hence, uy < ug (conversely,
up > u}). Without loss of generality we shall assume that there

exists a w € W withu,, > u;, and therefore u(w) = f € F
and uy < u} (in the alternative case we could simply repeat the
following argument, switching the sets W and F).

Obtain outcome (i, u') from (u, u) by adjusting the payoffs of
agents w, f suchthatu), = u,,—1anduj = us+1.Hence, agents w

and f stay matched, agent w makes a 1-error, and outcome (i, u')
is payoff closer to (i, u") than (u, u) is.

Let R' := ({w,f}. Starting from R', (i, u'), we construct a
blocking path that leads to successive (u, u¥), R that satisfy the
following properties.

13 Kojima and Unver (2008) give a path to stability result for many-to-many
matchings when one side of the market has responsive preferences and the other
has substitutable preferences. Newton and Sawa (2015) give a stochastic stability
result for many-to-one matchings with responsive preferences and show that this
does not extend to substitutable preferences.

(P-i) The set R¥ is nonempty and contains an equal number of
workers and firms such that

/

k
Uy > Uy, =Uy —1>u,,

for all w € R¥,
forallf € R*, u <uf=ur+1<uj, and
w # p(w) € Rk,

(P-ii) Foralli ¢ R, uf = u;.

Note that (P-i), (P-ii) and, for (P-iv), stability of (u, u) further imply

for all w € R,

(P-iii) outcome (1, u*) is payoff closer to (u’, u’) than (u, u) is,
and

(P-iv) there exist no blocking pairs for (i, u*) within the set R* or
the set (W U F) \ R&.1

It is easy to check that (P-i, ii) are satisfied for R', (u, ul).
Assume, as an inductive hypothesis, that a blocking path exists
from (u, u') to some (u, u¥), R satisfying (P-i, ii). If (i, u¥) is
stable, we are done. If (i, u¥) is not stable, there exists a blocking
pair (¥, f) € W x F with

u’éj+u}f<v(ﬁ),f). (1)

Case 1: i & RK. By (P-iv), f € R, therefore by (P-i, ii) we have
u’;—{-u}f = ug+up41 > v, ), with the final inequality following
from stability of (w, u). This contradicts (1).

Case 2: ) € RK. By (P-iv), f ¢ R & € R¥ implies uh = ug — 1
and f ¢ R¥ implies u}f = u;. Substituting into (1) we obtain
uy +uyp — 1 < v(zb,f). However, stability of (u, u) implies
upy +up = v(W, f), so it must be that

ug + up = v(@, ). (2)
Together, (1) and (2) imply that we can obtain an outcome
(W1, 1) from outcome (u, u*) by matching blocking pair
(0, f) with payoffs ut! = vk = uz—1 alndu}“rl = u}‘—{—l = u+1.

k
w w

Case 2a: u(f) = f.By Lemma 2(a), up = u} = 0. Thus, by (2),
u; = v(@,f). (P-i) and & € R imply u; > u;. So we have
v, f) = uy > u, =u, + u}, contradicting stability of (i, u').

Case 2b: pL(f) € W. This proof step is illustrated in Fig. 2. By (P-i),
W # u() € Rk Let = u(f) and f == ().

At outcome (u*1, uk*+1), agents @ and f are single and ut" =
uj’;‘“ = 0.Asf = u(d), we have ug + up = v(W, f). Therefore

ul&)—H + ulf—H

k+1 _

= uy — 1 < v(,f) and (@, f) is a blocking
pair for (u*t!, uk*1). We can obtain an outcome (p**2, uk*?)

from outcome (¥, uk*1) by matching blocking pair (%, f) with
payoffs ut = ub' = u; — 1and uf+2 = u; + 1. Note that

outcome (%2, u**2) differs from (i, u¥) only in that agents @ and

f are now unmatched.
(P-i) and @ € R¥ imply that u, < uy. Together with (2) this

implies u, + up < v(, f). Outcome (i, u') being stable implies
v, f) < u, + u}. Hence, u; < u}. Since (1, u') is a stable
outcome and, by Lemma 2(b),  is an optimal matching, we have
by Lemma 2(c) that (u, t') is stable. As w = u(f), it follows that

14 1f (@, f) is a blocking pair for (i, u¥) in R¥ (or in (W U F) \ R¥), then uk + u}f =

Uy + up < v(ug, uf) and (ti),f) is a blocking pair for (u, u); a contradiction.
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Fig. 2. Illustration of the inductive step in the proof of Theorem 2, Case 2b.

u; + u} = v(w, f). Together with up < u}, this implies u; < ug,

so it must be that uj > 0. Therefore, since w and f are single at
W20 = us? +uf? < up +up = v(@,f) and (@, f) is a
blocking pair for (u**2, u**2). We can obtain an outcome (i, ukt3)

from outcome (uk+? yk+2) b)/ matching blocking pair (%, f) with
payoffs u = u; — 1and ufr3 up + 1.

Let R"” = R U {w, f}). Note that outcome (u, u**3) and R¥+3
satisfy (P-i, ii).

Since from any unstable (u, u¥) satisfying (P-i, ii) we can reach
(j, u+3), R3O R satisfying (P-i, ii), and the set of agents is
finite, by iterating the above argument we must eventually attain
a stable outcome. By (P-iii), this stable outcome is payoff closer to
(w',u) than (u, u)is. 0O

Proof of Theorem 3. By statement of the theorem, (W, F, v) is an
assignment problem and (i, u), (', u) € (W, F, v) with u # u’
and u such that for alli # (i), u; +u,i > 0((u, u) is the starting
stable outcome and (', u) is the target stable outcome). Take a
pair (w, f) such that u(w) = f and u'(w) # f. By assumption,
Uy +uy > 0. Without loss of generality, assume u,, > 0 (ifu,, =0,
then uy > 0 and we would use f instead of w).

Obtain outcome (u, i) from (u, u) by adjusting the payoffs of
agents w, f such that i, = u,, — 1and &y = uy + 1. Hence, agents
w and f stay matched and agent w makes a 1-error.

As u, > 0, by Lemma 2(a) we have u'(w) # w. Let fi =
w'(w). Since (¢, u) is an outcome, u,, + U5, = v(w, f). Hence,

iy, + i, = uy, +u, — 1 < v(w, fi) and (w, f1) is a blocking pair
for (u, i1). We can obtain an outcome (!, u') from outcome (i, i)
by matching blocking pair (w, f;) with payoffs u}v =1, +1=u,
and u}] = i, = uy,. Note that since f; = u'(w), we have that
m(u', ') > m(u, ) [ie. outcome (u!, u') is match closer to
outcome (', u) than outcome (u, u) is].

Starting from (u!, u') we construct a blocking path that leads
to successive (uX, u¥) that satisfy the following properties.

(Q-i) There exist wy, ..., w; € W, f1,...,fi € F,1 > 1,such that
wk) =W () =w; forj=1,....1,
n() =wjq forj=1,...,1-1, and

[Note that for (!, u'), we let w; = w]

(Q-ii) If u(wy) € F, then p*(u(wq)) = p(wq) and if u(fy) € W,
then p*(u(f))) = u(f).

[i.e. any partners of w; or f; at u, are single at u¥]

(Q-iii) Fori € W UF, unlessi = u(wy) € Fori = u(f) € W,
we have u¥ = u;. Ifi = pu(wy) € Fori = pu(f;) € W, then
uk =o0.

(Q-iv) m(u', %) > m(u/, ).

Letting w; = w, itis easy to check that (Q-i, ii, iii, iv) are satisfied
for (1!, u'). Assume, as an inductive hypothesis, that a blocking
path exists from (u!, u') to some (p*, u¥) satisfying (Q-i, i, iii, iv).
If (u*, u¥) is stable, we are done. If (u¥, u¥) is not stable, then it
must be that u(w) € F, uy @) > 0or u(f) € W, u,p > 0,asif
neither of these held, then by (Q-iii), u* = u and (u*, u) would be
stable.

Assume, without loss of generality, that u(f})) € W, u,p) > 0

(the alternative case is similar). By Lemma 2(a), this implies that
w() # w'(u(f)) € F.Since (i, u) is an outcome, u, ) +
U@y = v (D), ' (n())).
Case 1: 1/ (1 (fi)) = n(wy). Since (1, u) is an outcome, U,y > 0
implies u,, ) + U,y = v((f), p(wr)) > 0. Asuf o =us =
0 by (Q-ii), u';(f,) +u,’j(w1) < v(u(f), w(wr)) and (u(f), u(wq)) isa
blocking pair for (i, u*). We can obtain an outcome (u**1, u*1)
from outcome (u*, u*) by matching blocking pair (i (f;), u(w1))
with payoffs u’;IfI]) = U, and uuﬂ)]) = Uy w,)- By (Q-ii) we then
have u**! = uand (p*t', u**1) is stable. By w/ (n(f)) = p(wq)
and (Q-iv), we have m(u/, u*t") > m(y’, u*) > m(u’, ), so we
are done.

Case 2: u/'(u(f)) # w(wyq). This proof step is illustrated in Fig. 3.

Since (u', u) is an outcome, ty + Uy gy = v(h), u/(u(fz))-
As u, ;) > 0 by assumption, uu(f) = 0 by (Q-ii), and uu’(u(fz))

U (u(iy by (Q-iii), we have uum) + uu’(u(fz)) < Uy + U@y =
v(p(f), ' (u(f))) and (u(f), w'(u(f)) is a blocking pair for
(uk u*). We can obtain an outcome (p*t!, u*¥t1) from outcome
(M u*) by matching blocking pair (w(f), ©' (1 (f;))) with payoffs
”;;Zfz = U, and u'; (L(m) = Uy (u(f))- Denoting w(f;) =: wiyq and
W ((f))) = firq, we see that (u*+1, uk*+1) satisfies (Q-i, i, iii, iv).

Given that the set of agents is finite, iterating we eventu-
ally reach some stable outcome (", u™) satisfying m(u/, u") >
m(u/, ) and u™ = u. Note that the algorithm must terminate at a
stable outcome, as eventually (1", u") = (u’, u) would have to be
reached. O

Proof of Theorem 4. Let § =
denotes the set of outcomes.

(i) Let o € 4. Then, by definition of 4, no (i,j) € P(W,F) is a
blocking pair for outcome o. Therefore T (o0, 0) = 1.
Note that (i) implies that for all o € © and all [ €
N, T"1(0, 8) > T'(0, 8).

$(W,F,v) and recall that O
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Fig. 3. Illustration of the inductive step in the proof of Theorem 3, Case 2.

(ii) By part (i), foro € 8,T(0,48) = 1.Leto € O \ 4. Then, by
Theorem 1, there exists a blocking path of finite length from
o to some o' € 4. Let [, be the length of the shortest such
blocking path starting from o. We have that T* (o, §) > 0.
Let | = maXeep\slo. Then, for allo € @, T'(o,8) > 0. Let
& = minyee T'(0, 8). Then, forallo € 9, T' 0, 9 \ §) < 1—E&.
Iterating, forallo € @ andalln € N, T™(0, O\ 4) < (1—£)".So
T"(0, @\ 8) — 0and therefore T" (0, §) — lasn — oo. 0O

Proof of Theorem 5. Let § .= §(W,F,v) and 48 = §8(W,F,
v, C).

Assume 0o = (u,u) € 84,0 = (ft, 1) € 4. This implies that
(u, u) € Lmin, (L, u) € 8. Take u and unmatch all pairs (i, w(i))
satisfying u; + u,; = 0. Call this new matching p'. Take [i and
unmatch all pairs (i, u(i)) satisfying u; + uz = 0. Call this new
matching f’. By Lemma 2(b), matchings w, i’ are optimal and so
are [, it

Starting from (u, u) = (u', u), obtain (u?, u) by unmatching
some pair (i, u(i)) satisfying u; + u, = 0. Note that
C((n', u), (2, u)) = 1and by Lemma 2(c), (u?, u) € 8. Iterating,
we eventually obtain (u!1, u) = (i, u) € 4.

From (u!',u) = (u',u), Theorem 3 shows that there exists
(uh*1 u) e 8, such that C((u1, uw), (uh*1,u)) = 1 and
(%1 u) is match closer to (', u) than (u!t, u) is. Iterating, we
obtainasequence (u'1, u), ('t u), ..., (uf2, u) = (@, u) € 3.

From (u'2,u) = (&, u), obtain (u2*', u) by matching some
pair (i, i(i)) satisfying u; + uzq = 0. Note that C((u2, u,
(121, u)) = 1 and by Lemma 2(c), (u2+', u) € 4. Iterating, we
eventually obtain ("3, u) = (fi, u) € 3.

From (u'3,u) = (fi,u), Theorem 2 shows that there exists
(in, uB*hy e 8, such that C((jx, u®), (i1, u3*")) = 1 and
(ir, uB3*1y is payoff closer to (fi, i1) than (f, u'3) is. Iterating, we

obtain a sequence (ji, u™3), (ir, uB*h), ..., (i, u) = (@, 1) € 8.
Writing (1!, uY) = (ul,u) forl = 1,...,L3, and (1!, u') =
(t,u') for I = L3 + 1,...,Ls, we have obtained a sequence of

stable states (u, u) = (u', ul), (u?, u?), ..., (uH, ul) = (@, )
such that C((u!, u), (W, ut)y =1,1=1,...,L4 — 1. Take g*
rooted at (u, u) such that V(g*) = Vuin((u, u)). Remove edges
exiting (u!, u"),1 = 1,...,Ls — 1, from g*. This reduces V(-) by
at least Ly — 1. Add edges (1!, u') — (u™1, u*1). This increases
V(-) by at most L, — 1. Denote the new graph g and note that

g € §((f, i1)). Therefore Vinjn((ji, 1)) < Viin((1, u)). So it must
be that (i, 1) € Lmix and (@1, ) € 48. O

Proof of Lemma 1. By statement of the Lemma, (u,u) €
8(W,F,v)issuchthatforallj # n(), uj+uyg > 0;i € Ao, u; >
0. We show how the outcome of a 1-error by agent i can be reached
via a 0-error.

Ifu,q = 0,thenlet (1!, u') be obtained from (i, u) by (i) be-
coming single. u} = u}m.) = 0. Then ¢, uay (1, 1), (11, ul)) =
8. Now, (i, (i) is a blocking pair for (!, u'). Let (2, u?) be ob-
tained from (u', u') by (i, (i) matching with payoffs u? = u; — 1
and ui(i) = U, + 1. (12, u?) is exactly the outcome that could be
obtained from (i, u) by a 1-error by i.

Ifu,; > 0,thenasi € Ay implies u(i) € Ao, there exists
an optimal matching ©* # w such that u*(u(i)) # i. Moreover,
by Lemma 2(a) we know that pu*(u(i)) # w(i). By Lemma 2(c),
(u*u) € $(W,F,v) and uyxuay + Upp = v (@), w@).
Let (u!, u') be obtained from (u, u) by (u* (1 (i)), (i) matching
with payoffs Lllll_*(u(i)) = Up*(u(i)) and u}t(,.) = Uyu()- Now, /Ll(l) =
i u,-] = 0, so u,i > 0 implies that (i, (i) is a blocking pair
for (u!, u'). Let (u?, u?) be obtained from (u', u') by (i, (i)
matching, u} = u;—1, 1%, ;) = )+ 11 (e (@) = p* (),
then let (1>, u®) = (u?, u?). Otherwise, (u* (1 (@), u(1* (ie())))
is a blocking pair for (12, u?) (by the assumption that for all j #
w(), u; + uug > 0). Let (13, u®) be obtained from (2, u?)
by (u*(u(D), w(u*(1a(i)))) matching with payoffs w’. .. =
Uy @y and u? = Uy (W3, u3) is exactly the

B (u@®) :
outcome that could be obtained from (u, u) by a 1-error by i. O

Proof of Theorem 6. Let § .= §(W,F,v) and 88 = §8(W,F,
v, C).

Assume o = (u,u) € 88,0 = (ji, i) € 4. This implies that
(w,u) € Lmin, (f,u) € 4. Take u and unmatch all pairs (i, w(i))
satisfying u; + u,; = 0. Call this new matching p'. Take i and
unmatch all pairs (i, ft(i)) satisfying u; 4+ uj = 0. Call this new
matching f’. By Lemma 2(b), matchings w, u” are optimal and so
are [, it

Starting from (i, u) = (1!, u), obtain (12, u) by unmatching
some pair (i, u(i)) satisfying u; + u,; = 0. Note that
C((u', u), (u?, u)) = 8 and by Lemma 2(c), (u?, u) € 4. Iterating,
we eventually obtain (u!1, u) = (u/, u) € 4. Note that ' (i) =j #
i implies that v(i, j) > 0.

Similarly to the proof of Theorem 5, Theorem 3 shows the

existence of a sequence of stable outcomes (01, ..., of2), ol =
(W, u),02 = (i',u) € 4, such that C(o%, 0t = §,t =
Ly,...,L, — 1. This step is possible because the argument in

Theorem 3 uses a 1-error at every step, which by Lemma 1 can be
replicated by a 0-error.

From o2 = (fi/,u) € 4, obtain o®2*' by matching some
pair (i, ;u(i)) satisfying u; + uzq = 0. Note that C((u2, u),
(u2*1, u)) = 8 and by Lemma 2(c), (u2*1, u) € 8. Iterating, we
eventually obtain o3 = (i, u) € 4.

The proof of Theorem 2 shows that if, for some i € Ag, u; > i,
then a 1-error by i can lead the process to a stable state which is
payoff closer to (i, &t) than (ji, u) is. Lemma 1 shows that such
a 1-error can be replicated by a 0-error. Therefore, there exists a
sequence of stable outcomes (03, ..., 0M), 08 = (fi,u),o =
(i, u) € 8,u* = i foralli € Ag,C(o',0t") = §,t =
Ls,...,L4 — 1. An identical tree argument to the final part of
the proof of Theorem 5 shows that o4 € $4 and completes the
proof. O

The proofs of Theorems 7 and 8 follow from the discussion in
the text and are omitted.
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