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Abstract Differing degrees of assortativity in matching can be expected to have both
genetic and cultural determinants. When assortativity is subject to evolution, the main
result of Alger and Weibull (Econometrica 81:2269–2302 2013) on the evolution of
stable other-regarding preferences does not hold. Instead, both non-Nash and Pareto
inefficient behavior are evolutionarily unstable.
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1 Introduction

Alger andWeibull (2013) show that, under an exogenously given matching protocol, a
population consisting of types (genotypes) whose behavior (phenotype) is determined
by a particular utility function, homo hamiltonensis, is robust to invasion by types
whose behavior differs from that of homo hamiltonensis. The level of other-regarding
behavior exhibited by homo hamiltonensis depends directly on the level of assorta-
tivity in matching shown by small populations of invading mutants. Specifically, in a
population of whom a proportion 1− ε are homo hamiltonensis and a proportion ε are
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some invading type τ , the level of other-regarding behavior by homo hamiltonensis is
given by limε→0 Pr [τ |τ, ε], where Pr [τ |τ, ε] is the probability that an agent matches
with a τ -type given that he himself is of type τ and that there are ε τ -types in the
population. That is, homo hamiltonensis’ behavior depends directly on the behavior,
as manifested via the degree of assortativity, of an invading type.

It is assumed by Alger and Weibull (2013) that the degree of assortativity is type
independent. That is, Pr [τ |τ, ε]does not dependon τ . This is a very strong assumption,
whether Pr [τ |τ, ε] is considered to be biologically or culturally determined. In fact, a
deep and interesting literature exists that looks at the evolution of assortative behavior,
in which mutants can exhibit higher or lower degrees of assortativity.1 In addition,
factors that indirectly lead to greater or lesser assortativity, such as the predilection to
roam far from home or habitat location and size, are subject to evolutionary pressures.2

Cultural determinants of assortativity also differ as social groups vary in degree of
hostility to outsiders and openness to external influence.3

Considering the above, it is important to include assortativity in the possible behav-
iors determinedby evolution. That is, to consider Pr [τ |τ, ε]dependent on τ . Following
this change, the predictions of Alger andWeibull (2013) no longer hold. If there exists
a selfish rover type, τr , whose strategic behavior is determined solely by individual
fitness considerations, and for whom limε→0 Pr [τ |τ, ε] → 0, then non-Nash equilib-
rium behavior is evolutionarily unstable. Moreover, if there exists aKantian parochial
type, τp, whose strategic behavior maximizes fitness from symmetric strategy profiles,
and for whom Pr [τ |τ, ε] = 1, then Pareto inefficient behavior is also evolutionar-
ily unstable. The only exception to these negative results arises when the incumbent
type is Kantian parochial. Such types will not interact with mutants, and without such
interaction, mutants cannot do better than Kantian parochial incumbents.

Thus, unless there exists a symmetric Nash equilibrium that is efficient amongst
all symmetric strategy profiles, or incumbents are perfectly isolated from any mutant
invasion, no single formof other-regardingpreferences canmonopolize the population;
we should expect to observe a variety of self-regarding and other-regarding behavior
by humans. People will behave differently, even when they face identical situations.
That is, we anticipate diverse preferences, rather than a specific type of homo moralis.

2 Model and result

Consider a population whose individuals are randomlymatched into pairs to engage in
a symmetric interactionwith the common strategy set X .An individual playing strategy
x against an individual playing strategy y receives a payoff, representing biological
fitness, π(x, y), where π : X2 → R. The pair 〈X, π〉 is the fitness game. X is a
nonempty, compact and convex set in a topological vector space and π is continuous.
Each individual is characterized by a type θ ∈ � which defines a continuous utility

1 See, for example, (Servedio 2010; Cara, M.A.R.d., Barton, N.H., Kirkpatrick, M., 2008; Dieckmann and
Doebeli 1999; Otto et al. 2008; Matessi et al. 2002; Pennings et al. 2008).
2 Dyson-Hudson and Smith (1978), Bearhop et al. (2005), López-Sepulcre and Kokko (2005).
3 Cashdan (2001), Choi and Bowles (2007), Fry and Söderberg (2013).
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function uθ : X2 → R and an index of assortativity σθ ∈ [0, 1]. An individual’s type
is his private information.

Consider a population with two types present and define a population state s =
(θ, τ, ε), where θ , τ ∈ � are the two types and ε ∈ (0, 1) is the population share of
type τ .

The random matching process is such that firstly a share σθ of individuals of type
θ are matched amongst themselves, and likewise a share στ of individuals of type
τ are matched amongst themselves. The remaining individuals of type θ and τ are
then uniformly matched. Let Pr [θ |θ, ε], Pr [τ |θ, ε] be the probabilities that a given
individual of type θ is matched with an individual of type θ , τ respectively. Let
Pr [θ |τ, ε], Pr [τ |τ, ε] be the probabilities that a given individual of type τ is matched
with an individual of type θ , τ respectively. The above description of the matching
process yields

Pr [τ |τ, ε] = (1 − στ )ε + (1 − σθ )στ (1 − ε)

(1 − σθ )(1 − ε) + (1 − στ )ε
.

Consequently, if σθ < 1, then limε→0 Pr [τ |τ, ε] = στ , and if σθ = 1, then
limε→0 Pr [τ |τ, ε] = 1. In either case, the balancing condition for heterogeneous
matchings implies that limε→0 Pr [θ |θ, ε] = 1.

For a state s = (θ, τ, ε), strategies x ∈ X used by type θ and y ∈ X used by type
τ , the average fitness of each type is

�θ(x, y, ε) = Pr [θ |θ, ε] · π(x, x) + Pr [τ |θ, ε] · π(x, y), (1)

�τ(x, y, ε) = Pr [θ |τ, ε] · π(y, x) + Pr [τ |τ, ε] · π(y, y). (2)

It is assumed that the strategies chosen by individuals of both types are a (Bayesian)
Nash equilibrium.

Definition 2.1 In any state s = (θ, τ, ε), a strategy pair (x∗, y∗) ∈ X2 is a (Bayesian)
Nash Equilibrium, (x∗, y∗) ∈ BNE(s), if

{
x∗ ∈ argmaxx∈X Pr [θ |θ, ε] · uθ (x, x∗) + Pr [τ |θ, ε] · uθ (x, y∗),
y∗ ∈ argmaxy∈X Pr [θ |τ, ε] · uτ (y, x∗) + Pr [τ |τ, ε] · uτ (y, y∗).

(3)

This definition defines, for fixed types θ , τ , an equilibrium correspondence
BNE(θ, τ, ·) : (0, 1) ⇒ X2 that maps mutant population shares to equilibria. Let-
ting Pr [·|·, 0] = limε→0 Pr [·|·, ε], the domain of BNE(θ, τ, ·) can be extended to
[0, 1).

The same definition of evolutionary instability asAlger andWeibull (2013) is used.4

4 The requirement that an incumbent strategy be strictly beaten by an invader in this definitionmakes it more
akin to neutral stability (Maynard Smith 1982) than to typical notions of evolutionary stability (Maynard
Smith and Price 1973; Taylor and Jonker 1978). For an elegant discussion of the relation between concepts
of evolutionary stability and asymptotic and Lyapunov stability under the replicator dynamics, the reader
is referred to Bomze and Weibull (1995).
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Definition 2.2 A type θ ∈ � is evolutionarily unstable if there exists a type τ ∈ �

and ε̄ > 0 such that �θ(x∗, y∗, ε) < �τ (x∗, y∗, ε) in all Nash equilibria (x∗, y∗) in
all states s = (θ, τ, ε) with ε ∈ (0, ε̄).

Two types are now defined, the first of which will guarantee that non-Nash behavior
is unstable, the second of which will guarantee that Pareto inefficient behavior is
unstable. Note that, replacing a universal value of σ by type specific στ , both of these
types are varieties of homo hamiltonensis (Alger and Weibull 2013).

Definition 2.3 The selfish rover type τr satisfies uτr (x, y) = π(x, y); στr = 0.
The Kantian parochial type τp satisfies uτp (x, y) = π(x, x); στp = 1.

Type τr is selfish in that individuals with this type have preferences that are aligned
perfectly to individual fitness. They are rovers in that they have no proclivity to have
a disproportionate share of their interactions with individuals of the same type as
themselves. Type τp isKantian in the sense ofAlger andWeibull (2013)who argue that
the maximization of symmetric payoffs is akin to Kant’s (1785) categorical imperative
to “act only on that maxim whereby thou canst at the same time will that it should
become a universal law.”5 They are parochial in that they interact onlywith individuals
of the same type.

For each type θ ∈ �, let βθ : X ⇒ X denote the best response correspondence,
βθ (y) = argmaxx∈X uθ (x, y) ∀y ∈ X, and Xθ ⊆ X the set of fixed points under βθ ,

Xθ = {x ∈ X : x ∈ βθ (x)} .

Note that Xτr corresponds to the set of symmetric Nash equilibria when selfish indi-
viduals maximize their own fitness. In contrast, Xτp corresponds to the set of Pareto
efficient symmetric strategy profiles.

Theorem 2.1 (a) If Xθ ∩ Xτr = ∅, σθ < 1, τr ∈ � and Xθ = {x̃}, βτr (x̃) are
singletons, then θ is evolutionarily unstable.

(b) If Xθ ∩ Xτp = ∅ and τp ∈ �, then θ is evolutionarily unstable.
(c) τp is not evolutionarily unstable.

Proof Let s = (θ, τr , ε), (x∗, y∗) ∈ BNE(θ, τr , 0). Note that Pr [θ |θ, 0] = 1 and, as
σθ < 1, Pr [τr |τr , 0] = 0. From (3) it follows that

x∗ ∈ argmax
x∈X uθ (x, x

∗) (4)

which implies x∗ ∈ Xθ . Also from (3),

y∗ ∈ argmax
y∈X uτr (y, x

∗) = argmax
y∈X π(y, x∗). (5)

5 For this Kantian interpretation, fitnesses π(., .) must be in some sense absolute and not just relative,
otherwise there would be no reason to desire any given society-wide symmetric strategy profile over another.
There is a separate debate that can be had onwhy orwhether onewould desire a universal law thatmaximizes
the reproductive fitness of society.
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If x∗ ∈ argmaxy∈X π(y, x∗), then x∗ ∈ Xτr , contradicting Xθ ∩ Xτr = ∅. There-
fore, x∗ /∈ argmaxy∈X π(y, x∗), which implies that π(y∗, x∗) > π(x∗, x∗), hence
�τr (x

∗, y∗, 0) > �θ(x∗, y∗, 0).
The assumption that Xθ = {x̃} and βτr (x̃) = argmaxy∈X π(y, x̃) are single-

tons implies that Xθ = {x∗} and argmaxy∈X π(y, x∗) = {y∗}. That is, (x∗, y∗) is
uniquely determined by (4) and (5). Continuity of�τr ,�θ implies that�τr (x, y, ε) >

�θ(x, y, ε) for all (x, y, ε) in some neighborhood U ⊂ X2 × [0, 1) of (x∗, y∗, 0).
By upper-hemicontinuity of BNE(θ, τr , ·) (Lemma 1 of Alger and Weibull 2013), for
small enough ε we have that BNE(θ, τr , ε) ⊂ U . This proves (a).

Now, let s = (θ, τp, ε), (x∗, y∗) ∈ BNE(θ, τp, ε). Note that Pr [θ |θ, ε] = 1,
Pr [τp|τp, ε] = 1. (4) continues to hold so x∗ ∈ Xθ . Now,

y∗ ∈ argmax
y∈X uτp (y, y

∗) = argmax
y∈X π(y, y). (6)

If x∗ ∈ argmaxy∈X π(y, y), then x∗ ∈ Xτp , contradicting Xθ ∩ Xτp = ∅. There-
fore, x∗ /∈ argmaxy∈X π(y, y), which implies that π(y∗, y∗) > π(x∗, x∗), hence
�τp (x

∗, y∗, ε) > �θ(x∗, y∗, ε). This holds for any ε, (x∗, y∗) ∈ BNE(θ, τp, ε),
which proves (b).

Reversing the positions of θ and τp in the preceding paragraph so that s = (τp, θ, ε)

and τp is the incumbent type, we have that x∗ ∈ argmaxy∈X π(y, y), so π(x∗, x∗) ≥
π(y∗, y∗) and �τp (x

∗, y∗, ε) ≥ �θ(x∗, y∗, ε) for any invading type θ , therefore τp
is not evolutionarily unstable. �

Note that the condition in Theorem 2.1(a) that Xθ be a singleton mirrors the similar
condition in Theorem 1 of Alger and Weibull (2013). It stems from the extremely
strict definition of evolutionary instability adopted by the authors of the cited work
(and hence here), whereby there must exist an invading strategy that, for small enough
ε, can outperform the incumbent strategy in every equilibrium. It is not enough that the
invading type eventually outperforms the incumbent type on any sequence of equilibria
converging to any given (x∗, y∗) ∈ BNE(θ, τr , 0) as ε → 0.

Further note that the argument of Theorem 2.1(b) together with continuity of π

implies that for a given incumbent type θ and sequence of equilibria converging to
any given (x∗, y∗) ∈ BNE(θ, τp, 0) as ε → 0, for τp to eventually outperform θ it
is not necessary that στp = 1, only that στp be sufficiently close to 1. In contrast,
Theorem 2.1(a) suggests that the qualitative implications of Theorem 2.1(c) are not
robust to less than perfect segregation, as incumbent Kantians with σ strictly less than
1 are vulnerable to invasion by type τr . Finally, in a setting with unobservable types, it
seems highly unlikely that an entire incumbent population will never interact with any
mutant type. Consequently, the message the reader should take from this Theorem is
that we can expect preferences to be unstable when they are conditioned only on an
unobservable type.

3 Discussion

Theorem 2.1 shows that when both assortativity and preferences evolve, it is highly
unlikely that either non-Nash behavior or inefficient behavior will persist indefinitely
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in the long run. This is not particularly troublesome: the world, after all, is a dynamic
and changing place. However, it is relevant to ask under what conditions the results
of Alger and Weibull (2013) will pertain. It is clear that a necessary condition is
that changes in assortativity take place on a much longer timescale than changes in
preferences.6 Unfortunately, such situations are difficult to conceive and would not
seem to be common. The examples in the paper under discussion do not help here.
The example of “Kin” (p. 2286, op.cit.) is uncontroversial but not germane as past
behavior of close relatives would likely be observable, from which their (pheno)type
could be inferred. Besides, in very small groups, there is a significant chance of a
mutation attaining fixation via genetic drift, regardless of the direction of selection.

The example of “Geography, Homophily and Business Partnerships” (p. 2287,
op.cit.) is one where assortativity would be expected to vary and be subject to selection
on a similar timescale to preferences. The cited example considers N groups, each
containing n individuals, with mutation affecting individuals within a single group.
As mutations are restricted to a single group, the share of mutants in the population, ε,
can be taken to zero by letting the number of groups N go to infinity. In the limit, the
probability of an individual matching within his own group is denoted p∗(n). If we
assume that every member of the mutant-containing group is a mutant7, then p∗(n) is
exactly the limiting probability of a mutant being matched with another mutant. That
is, Pr [τ |τ, 0] = στ = p∗(n). Now, let mutants, rather than having στ fixed and equal
to p∗(n), differ in their proclivity to match within their own group. Consequently, if
p∗(n) < 1, then Pr [τ |τ, 0] will vary with στ and Theorem 2.1(a), (b) will apply. If
p∗(n) = 1, then Theorem 2.1(b), (c) will apply.

Finally, note that even if assortativity and preferences are determined at different
genetic loci and simultaneous mutation is rare, the implications of Theorem 2.1 still
hold. Given any fixed choice behavior in a population, there is no selection for or
against different degrees of assortativity, so genetic drift will create clusters of rovers
and clusters of parochials, thus providing hospitable environments for the invasion of
selfish or Kantian behavior.
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