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ABSTRACT

A coordination game is repeatedly played on a graph by players (vertices) who
have heterogeneous cardinal preferences and whose strategy choice is governed
by the individualistic asynchronous logit dynamic. The idea of potential driven
autonomy of sets of players is used to derive results on the possibility of
heterogeneous preferences leading to heterogeneous behavior. In particular,
a class of graphs is identified such that for large enough graphs in this class,
diversity in ordinal preferences will nearly always lead to heterogeneity in
behavior, regardless of the cardinal strength of the preferences. These results
have implications for network design problems, such as when a social planner
wishes to induce homogeneous/heterogeneous behavior in a population.
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1. INTRODUCTION

Ever since the classic treatment of Lewis (1969), game theory has concerned
itself with the behavior of individuals and groups within societies when inter-
actions between individuals take the form of a coordination game. One area of
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this literature has studied perturbed adaptive dynamics (Freidlin & Wentzell,
1984; Foster & Young, 1991) and looked at long run behavior (Young, 1993;
Kandori et al., 1993; Blume, 1996; Peski, 2010; Neary, 2012; Staudigl, 2012)
and the speed of convergence of behavior (Young, 2011; Ellison, 2000; Monta-
nari & Saberi, 2010; Newton & Angus, 2015) in binary-choice coordination
games under different interaction structures, which can be represented by
graphs, with players represented by vertices and interactions between players
represented by edges.

A set of players is said to be autonomous if predictions can be made about
the behavior of players within the set without considering the behavior of
players outside of the set. Young (2011) shows how one concept of autonomy,
potential autonomy,1 associated with the maximization of a potential function,
is related to graph structure, and uses this connection to derive results on the
speed of convergence of a population to homogeneous behavior under log-
linear dynamics when interactions are identical, symmetric coordination games.
Here, it is shown that when interactions are non-identical and asymmetric, these
ideas can be used to make statements about the long run behavior of players,
in particular about the possibility of convergence to states in which different
players play different strategies. Specifically, there is heterogeneity in players’
raw preferences for one action over another, and the strength of any given
player’s preference is given by an individual-specific preference parameter.
Conditions under which heterogeneous preferences lead to heterogeneous
behavior are given. In particular, a class of graphs, corpulent graphs, is
identified such that, for large enough graphs in this class, random diversity
in ordinal preferences will nearly always lead to heterogeneity in behavior,
regardless of the cardinal strength of the preferences.

When preferences are homogeneous, long run behavior under log-linear
dynamics is independent of interaction structure (Blume, 1996). However,
when preferences are heterogeneous, modifying the graph of interactions can
affect long run behavior. Consequently, our results have design implications.
For example, a planner may wish to design a network of interactions that leads
to a particular pattern of behavior, such as the universal adoption of a new
technology. Alternatively, a planner may be faced with a given interaction
structure but have limited scope to influence the preferences of some of the
individuals. We conclude Section 3 with a discussion of such issues.

1 Terminology introduced by Newton & Sercombe (2017) to distinguish potential autonomy
from other forms of autonomy.
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The paper is organised as follows. Section 2 gives the basic model. Section
3 links heterogeneity and potential autonomy. Section 4 considers random
preferences.

2. MODEL

The model is a standard one and we follow the notation of Newton & Sercombe
(2017), which builds on that of Young (2011). Consider a simple, finite,
connected graph Γ = (V,E). The vertex set V represents a set of players.
The edge set E, consisting of unordered pairs of elements of V , represents
connections between players. If two vertices share an edge they are said to
be neighbors. The number of neighbors of a vertex i ∈ V is the degree of i.
For S⊆V , S 6= /0, denote by d(S) the sum of the degrees of vertices in S. For
T,S ⊆ V , denote by d(T,S) the number of edges {i, j} ∈ E such that i ∈ T
and j ∈ S. For notational convenience we write d({i}) as d(i) and d({i},S) as
d(i,S). We write V \S for the complement of S in V .

Let {A,B} be the (binary) set of strategies available to the players. A
strategy profile σ is a function σ : V →{A,B} that associates each player with
one of the two strategies. Let σS, σ−S denote σ restricted to the domains S
and V \ S respectively. Let σA, σB be the strategy profiles such that for all
i∈V , σA(i) = A, σB(i) = B. Denote by VA(σ)⊆V the set of players who play
strategy A at profile σ and by VB(σ)⊆V the set of players who play strategy B
at profile σ . Given the strategies played by i and j, an edge {i, j} ∈ E generates
payoffs for i and j as determined by the game in Figure 1. The payoff of player
i ∈ V at profile σ is then the sum of these payoffs over the edges he shares
with each of his neighbors on the graph. Formally, player i’s payoff at σ is

πi(σ) =

{
γi d(i,VA(σ)) if σ(i) = A
(1− γi)d(i,VB(σ)) if σ(i) = B

. (1)

This basic setup is identical to the model of Newton & Sercombe (2017)
except for two differences. First, every pairwise interaction is restricted to have
zero payoffs off-diagonal. Given that only individual agency is considered in
the current paper (i.e. the unit of decision making is always a single player), this
is without loss of generality (see the cited work for details). Second, payoffs are
allowed to differ between players, whereas the cited work considers symmetric
payoff matrices. We refer to γi as player i’s type, which is the (threshold)
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A B
A γi, γj 0
B 0 1− γi, 1− γj

Figure 1: For {i, j} ∈ E, for each combination of A and B, entries give payoffs
for i ∈V and j ∈V respectively. Both γi,γ j ∈ (0,1).

fraction of i’s neighbours required to play strategy B in order for i’s payoff
from playing strategy B to be at least as high as his payoff from playing strategy
A. Hence the appellation threshold model (Granovetter, 1978).

We note that this specification admits an exact potential function (Monderer
& Shapley, 1996) given by

Potential(σ) = ∑
{i, j}∈E:
σ(i)=A
σ( j)=A

(γi + γ j)+ ∑
{i, j}∈E:
σ(i)=A
σ( j)=B

γi + ∑
{i, j}∈E:
σ(i)=B
σ( j)=B

1 (2)

The potential function aggregates information from the game in a way that
retains information on the incentives of players under individual agency. Specif-
ically, if we adjust the strategy of any single player, the change in his payoff
equals the change in the potential function.

In the current context, the potential function is important in determining
long run behaviour under a dynamic process of strategic adjustment. Specif-
ically, we consider the individualistic asynchronous logit dynamic. Let σ t

denote a strategy profile at time t ∈N. At time t, a single vertex i∈V is chosen
uniformly at random and with probability

e
1
η

πi(A,σ t−1
−i )

e
1
η

πi(A,σ t−1
−i )+ e

1
η

πi(B,σ t−1
−i )

, η > 0,

we let σ t(i) = A. Otherwise we let σ t(i) = B. For j ∈ V , j 6= i, let σ t( j) =
σ t−1( j).

This process has a unique invariant probability measure µη on the state
space {A,B}V . Blume (1993) shows that as η→ 0, all mass under µη accumu-
lates on the states σ that globally maximize Potential(σ). That is, the global
maximizers of Potential(·) are the stochastically stable (Young, 1993) states
of the process.
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3. FIXED PREFERENCES AND AUTONOMY

Adapting the terminology of Newton & Sercombe (2017), in turn inspired by
Young (2011), a set of players S is autonomous if there is some reasonable
expectation that players in the set will come to play a subprofile of strategies
σS regardless of the behaviour of those outside of S. Young (2011) discusses
autonomy in terms of potential maximization. Newton & Sercombe (2017)
refer to this form of autonomy as potential autonomy to distinguish it from
agency autonomy driven by collective agency. Here we only deal with potential
autonomy. A set of players S is σ∗S -autonomous if, for any strategies played by
players outside of S, a higher potential is attained when players in S play σ∗S
than when they play any other strategies.

Definition 1. S⊆V is σ∗S -autonomous if, for all σ such that σS 6= σ∗S ,

Potential(σ∗S ,σ−S)> Potential(σ).

Autonomy will be used to examine the possibility of heterogeneity in
preferences leading to heterogeneity in behavior, specifically the possibility of
multiple strategies being played at stochastically stable states. Let SA be the
set of players who, all else equal, have a preference for strategy A, and let SB

be the set of players who have a preference for strategy B. That is,

SA := {i ∈V : γi > 1/2} and SB := {i ∈V : γi < 1/2}.

Let σP be the state at which each player plays his preferred strategy. That is,

σ
P(i) =

{
A if i ∈ SA

B if i ∈ SB .

We now state our first result.

Lemma 1. Fix a graph Γ = (V,E) and a set of types {γi}i∈V .

[1a] σP is the unique stochastically stable state if and only if SA is σA
SA-

autonomous and SB is σB
SB-autonomous.

[1b] σA is a stochastically stable state if and only if there does not exist S⊆V
such that S is σB

S -autonomous.
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S

CK(S) = minS′⊆S
d(S′,S)
d(S′) = 3

8

Pl(S) = d(S,S)
d(S) = 9

22

i

j k

Figure 2: A graph Γ = (V,E) and a subset of vertices S ⊂ V that illustrate
aspects of Lemmas 1, 2, 3. See text for discussion.

[1c] σB is a stochastically stable state if and only if there does not exist S⊆V
such that S is σA

S -autonomous.

The “if” part of [1a] and the “only if” parts of [1b],[1c] follow immediately
from the definition of σS-autonomy. The “only if” part of [1a] follows from
complementarity of the arguments in the potential function, specifically the fact
that if SA is not σA

SA-autonomous, then σSA = σA
SA cannot uniquely maximize

potential given σSB = σB
SB . The “if” parts of [1b],[1c] are proved by showing

that if, from σA or σB, potential can be increased by changing the strategies of
a set of players, then some subset of this set must be autonomous for their new
strategies.

If the conditions of neither [1b] nor [1c] are met, that is there exist S,S′⊆V
such that S is σB

S -autonomous and S′ is σA
S′-autonomous, then any stochastically

stable state will be heterogeneous. However, such a state will only involve
each player playing his preferred strategy if the condition in [1a] holds. If
neither [1a] nor [1b] nor [1c] holds, then any stochastically stable state will
be both heterogeneous and involve some players playing their less preferred
strategy.

Considering Figure 2 and ignoring terms that shall be defined later in the
paper, we can, for example, state by [1b] that if the subset of vertices S is
σB

S -autonomous, then σA is not a stochastically stable state. Conversely if
there exists no such σB

S -autonomous set (over all subsets of vertices), then σA

is stochastically stable.
Young (2011) shows that potential autonomy depends on the graph the-

oretic property of close-knittedness, which measures how well integrated
each subset of a group of players is with the rest of the group. Our precise
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definition of close-knittedness follows Newton & Sercombe (2017).2 The
close-knittedness of a set S⊆V is given by

CK(S) := min
S′⊆S

d(S′,S)
d(S′)

.

Young (2011) links potential autonomy and close-knittedness to discuss the
speed of convergence to homogeneous strategy profiles. Under heterogeneous
preferences, these connections can be used to make statements about the
stochastic stability of heterogeneous strategy profiles. Similarly to Proposition
2 of Young (2011), we obtain the following lemma.

Lemma 2. Fix a graph Γ = (V,E) and a set of types {γi}i∈V . Then, for any
nonempty S⊆V ,

[2a] If CK(S)> maxi∈S 1− γi, then S is σA
S -autonomous.

[2b] If S is σA
S -autonomous, then CK(S)> mini∈S 1− γi.

[2c] If CK(S)> maxi∈S γi, then S is σB
S -autonomous.

[2d] If S is σB
S -autonomous, then CK(S)> mini∈S γi.

That is, sets S with high CK(S) are more likely to be potential autonomous
and vice versa. The min and max operators enter because of the heterogeneity
of the values of γi for i ∈ S. High values of γi make i ∈ S more amenable to
playing A, and low values do the opposite. As, by definition, CK(S) ∈ [0, 1/2]
and γi ∈ (0,1), it can never be the case that both CK(S)> 1−γi and CK(S)> γi,
so the conditions in [2a] and [2c] never hold simultaneously.

Returning to Figure 2, we see that CK(S) = 3/8. Consequently, by [2c],
if every l ∈ S has type γl < 3/8, then S is σB

S -autonomous. Conversely, [2d]
tells us that if S is σB

S -autonomous, then at least one player l ∈ S has γl < 3/8.
The reason that the converse does not imply the inequality for all players in S
is that the subset S′ ⊆ S that determines the value of CK(S) need not include
all of the players in S. In Figure 2, we see that the minimum over d(S′,S)/d(S′)

is attained when S′ = {i, j}. The constraints on type that σB
S -autonomy of S

places on vertices such as k which lie outside of this subset are less tight.
If we restrict the set of types, {γi}i∈V , so that there are two types of player,

those with γi = γA > 1/2 who prefer strategy A, and those with γi = γB < 1/2

2 Young (2011) refers to a set S as ‘r-close knit’ if CK(S)≥ r.
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a1

a4

a2

a3

b1

b2

b3

b4

b5

b6

b7

SA SB

CK(SA) = 3
10

γA = ?
?

CK(SB) = 3
8

γB = 1
5

Figure 3: A graph Γ = (V,E) and a subset of vertices S ⊂ V . As per the
assumptions of Corollary 1, there are two types, γA and γB, with γB < 1/2 < γA.
Consequently, for i ∈ SA = {a1, . . . ,a4}, γi = γA and for i ∈ SB = {b1, . . . ,b7},
γi = γB. In the text we use this example to illustrate the use of Lemmas 1, 2
and Corollary 1 in the design of interaction structures.

who prefer strategy B, then we have a network version of the Language Game
of Neary (2012). Under this restriction γA = maxi∈SA γi = mini∈SA γi and γB =
maxi∈SB γi = mini∈SB γi, so Lemma 2 and Lemma 1[a] can be used to give
necessary and sufficient conditions for stochastic stability of σP in terms of
close-knittedness of SA and SB. This is captured in the following corollary.

Corollary 1. Fix a graph Γ = (V,E) and a set of types {γi}i∈V , such that for
all i ∈V , γi ∈ {γA,γB}, γB < 1/2 < γA. Profile σP is the unique stochastically
stable state if and only if CK(SA)> 1− γA and CK(SB)> γB.

Consider a social planner who wishes to use Lemmas 1, 2 and Corollary 1
to induce a particular pattern of behavior. Suppose the planner is faced with
the interaction structure and type profile in Figure 3.

As CK(SB) = 3/8 > 1/5 = γB = maxi∈SB γi, we have, by [2c] of Lemma
2, that SB is σB

SB-autonomous. Consequently, all players in SB play B at any
stochastically stable state.

It remains to determine the behavior of players in SA. We find the values
of γA such that SA is σA

SA
-autonomous. Note that γi = γA for all i ∈ SA. Conse-

quently, mini∈SA γi = maxi∈SA γi = γA, so [2a] and [2b] of Lemma 2 imply that
SA is σA

SA-autonomous if and only if CK(SA)> 1−γA. Computation yields that
CK(SA) = 3/10, so we have that SA is σA

SA-autonomous if and only if γA > 7/10.
Therefore, if γA > 7/10, then σP is the unique stochastically stable state, as

predicted by Corollary 1. Further, it can be checked that if γA ≤ 7/10, then not
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only is SA not σA
SA-autonomous, but no subset S⊂ SA is σA

S -autonomous, so by
[1c] of Lemma 1, σB is stochastically stable.

Now consider the case of a social planner who wishes to induce σP but is
faced with γA < 7/10. To overcome this problem, she would like to increase the
close-knittedness of SA to obtain a lower threshold value of γA. Assume she
has the resources to make one of three kinds of amendment: she can add an
edge, delete an edge, or change the type of a player.

Adding an edge between players in SB will increase CK(SB) while leaving
CK(SA) unaffected. Adding an edge between a player in SA and a player in
SB will decrease CK(SA) and CK(SB). Adding an edge between players in SA,
for example {a1,a3}, will increase CK(SA) to 1/3, which in turn lowers the
threshold on γA to 2/3. If γA > 2/3, then σP will become uniquely stochastically
stable. Conversely, if γA < 2/3, then no single additional edge can make σP

stochastically stable.
Suppose instead that the planner deletes an edge. For this deletion to

increase CK(SA), it must be an edge from a player in SA to a player in SB,
for example {a2,b1}. This also increases CK(SA) to 1/3 and so lowers the
threshold on γA to 2/3.

Finally, consider the planner changing the type of a single player. If she
converts either a1 or a4 to type γB, then CK(SA) is reduced to 2/9, whereas if
she converts either a2 or a3, then CK(SA) is reduced further to 1/6. Such a
conversion might be useful if the planner were trying to encourage uniform
adoption of strategy B.3 In the other direction, if the planner were to convert
b4 to type γA, then CK(SA) would increase to 1/3 and CK(SB) would decrease
to 5/14, which is small enough that SB would still be σB

SB-autonomous.

4. RANDOM PREFERENCES

In this section we consider random preferences and give conditions under
which we can usually expect any stochastically stable state to exhibit het-
erogeneity in strategies. Specifically, we show that as long as there is some
diversity in ordinal preferences, then there will usually be diversity of behavior
on sufficiently large graphs within a specific class.

First, we shall give conditions under which homogeneous states cannot

3 It should be remarked that in some contexts, the switch of a player from type γA to type γB
could increase CK(SA).
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be stochastically stable when preferences are fixed. This shall depend on the
plumpness of sets S⊆V , which we define as

Pl(S) :=
d(S,S)
d(S)

.

To use terminology from Young (2011), plumpness measures the area
d(S,S) of a set S relative to its perimeter d(S,V \S).4

It is immediate from their definitions that CK(S) ≤ Pl(S) ≤ 1/2. The
difference in their definitions relates to potential as follows. From profile σB,
if S is sufficiently plump relative to maxi∈S 1− γi, then potential increases if
we switch S to play σA

S . In contrast, Lemma 2 shows that, if S is sufficiently
close-knit, then σA

S maximizes potential given σB
V\S. In both cases, σB is not

stochastically stable.

Lemma 3. Fix a graph Γ = (V,E) and a set of types {γi}i∈V . Then, for any
nonempty S⊆V ,

[3a] If Pl(S)> maxi∈S γi, then σA is not stochastically stable and there exists
S′ ⊆ S such that S′ is σB

S′-autonomous.

[3b] If Pl(S)> maxi∈S 1− γi, then σB is not stochastically stable and there
exists S′ ⊆ S such that S′ is σA

S′-autonomous.

Returning to Figure 2, we see that Pl(S) = 9/22 > 3/8 =CK(S). Thus, for
example, if maxi∈S γi = 2/5, we have that Pl(S)> maxi∈S γi >CK(S). Conse-
quently, we cannot use [2c] to state whether S is σB

S -autonomous. That is, we
do not know whether potential is always maximized when players in S play
B. However, we can use [3a] to infer that potential is higher when all players
in S play B than when all players in S play A. Furthermore, we know that S
contains a subset S′ ⊆ S such that S′ is σB

S′-autonomous. It can be checked by
calculation that the subset S′ ⊂ S comprising the rightmost 4 vertices of S is
indeed σB

S′-autonomous when maxi∈S γi = 2/5.
Consider a sequence of graphs {Γk}k∈N+ , Γk = (Vk,Ek). We say that such

a sequence is corpulent if, for any target level of plumpness, there is a growing

4 To see this, note that

Pl(S) =
d(S,S)
d(S)

=
d(S,S)

d(S,V \S)+2d(S,S)

which is increasing in the ratio of area to perimeter.
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number of non-intersecting sets of bounded size which are at least as plump as
the target level.

Definition 2. A sequence of graphs {Γk}k∈N+ is corpulent if, for all φ ∈ (0, 1/2),
there exists l ∈ N+, such that for all n ∈ N+, there exists k̄, such that for all
k ≥ k̄, Γk = (Vk,Ek) contains subsets {Sm}m=n

m=1, Sm ⊂ Vk, such that |Sm| ≤ l,
Sm∩Sm′ = /0 for m 6= m′, and Pl(Sm)≥ φ for all m.

It follows from the definition that any corpulent sequence will be increasing
in size so that limk→∞ |Vk|= ∞. Some examples of corpulent families of graphs
are square lattices with von-Neumann neighborhood or Moore neighborhood,
the Kagome lattice, and the ring (see Figure 4).

The idea of a corpulent sequence of graphs is that as the graphs in such a
sequence increase in size, they include an arbitrarily large number of arbitrarily
plump subsets. To illustrate this, consider the case when Γk is the k by k
square lattice with von-Neumann neighborhood. Assume some target level
of plumpness, φ ∈ (0, 1/2). Consider a subset S of such a Γk, such that S is
composed of a

√
l by
√

l block of vertices so that |S|= l, and d(i) = 4 for all
i ∈ S (see Figure 5). Then d(S,S) = 2

√
l(
√

l−1) and d(s) = 4 l, so Pl(S) =
(
√

l−1)/2
√

l. This implies that if we choose l large enough, then Pl(S)> φ . For
any positive integer n, we can then choose k large enough that Γk includes n
such sets S1,S2, . . . ,Sn that do not intersect one another, thus satisfying the
definition of corpulence.

Now, let each γi, i ∈V , be independently drawn according to a probability
measure P on the Borel sets of (0,1). We say that preferences are ordinally
diverse if there is nonzero probability of a given player i ∈V having an ordinal
preference for A over B and vice versa.

Definition 3. Preferences are ordinally diverse if P[γi ∈ (0, 1/2)]> 0 and P[γi ∈
(1/2,1)]> 0.

For a given graph Γ = (V,E), abuse notation to let P[H |Γ] be the prob-
ability that one of the two homogeneous states, σA or σB, is stochastically
stable when the types {γi}i∈V are determined according to P.

We can now state the main result of this section. When preferences are
ordinally diverse, large corpulent graphs will nearly always have heterogene-
ity in strategies at stochastically stable states. That is, ordinal diversity in
preferences implies diversity in behavior for large graphs within these families.



“NearyNewton” — 2017/10/23 — 16:08 — page 12 — #12

Journal of Mechanism and Institution Design, 1(1), 12

(a) (b)

(c) (d)

Figure 4: Examples of corpulent families of graphs include (a) square lattice
with von-Neumann neighborhood; (b) square lattice with Moore neighborhood;
(c) Kagome lattice; (d) the ring.

Theorem 1. If {Γk}k∈N+ is corpulent and preferences are ordinally diverse
then limk→∞P[H |Γk] = 0.

The intuition behind the theorem is that large graphs in corpulent sequences
have large numbers of very plump sets of vertices. Indeed, for an arbitrary
target level of plumpness it is possible to choose a graph large enough that
it has an arbitrary number of non-intersecting sets that are at least as plump
as the target level. Ordinal diversity ensures that, usually, at least some of
these sets will be composed solely of players with an ordinal preference in
favour of strategy A and some will be composed solely of players with an
ordinal preference for strategy B. These preferences may be cardinally very
weak, but this does not matter as the target level of plumpness can be adjusted
to take account of this. Consequently, large corpulent graphs under random
preferences will usually contain sets of players with homogeneous ordinal
preferences that are plump enough, per Lemma 3, to destabilize homogeneous
behavior in the population.
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S1

S2

Figure 5: Non-intersecting sets S1, S2 such that l = |S1| = |S2| = 16 and
Pl(S1) = Pl(S2) = 3/8. Arbitrarily large square lattices with von-Neumann
neighborhood can include arbitrarily large numbers of such sets.

A. APPENDIX

Proof of Lemma 1[a].
(⇐) Assume that SA is σA

SA-autonomous and SB is σB
SB-autonomous. As SA is

σA
SA-autonomous, any state σ∗ that maximizes potential and is thus stochas-

tically stable must, by Definition 1, have σ∗SA = σA
SA . Similarly, σ∗SB = σB

SB .
Therefore, σ∗ = (σA

SA,σ
B
SB) = σP.

(⇒) Assume that σP is uniquely stochastically stable and thus uniquely maxi-
mizes potential. If SA is not σA

SA-autonomous, then, by Definition 1, for some
σ , σSA 6= σA

SA ,

Potential(σA
SA,σ−SA)≤ Potential(σ). (3)

Note that, by (2), edges between vertices playing different strategies give lower
potential than edges between vertices playing the same strategy. Therefore, (3)
implies

Potential(σA
SA,σ

B
−SA)≤ Potential(σSA,σB

−SA). (4)

but as σP = (σA
SA,σ

B
−SA), inequality (4) implies that σP does not uniquely

maximize potential, so σP is not uniquely stochastically stable. Contradiction.
Therefore, SA must be σA

SA-autonomous. Similarly, SB must be σB
SB-autonomous.
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Proof of Lemma 1[b] (and by analogy, [c]).

(⇒) Assume that σA is stochastically stable and thus maximizes potential. If
there exists S⊆V such that S is σB

S -autonomous, then by Definition 1,

Potential(σB
S ,σ

A
−S)> Potential(σA), (5)

contradicting σA being a potential maximizer. Therefore, there does not exist
S⊆V such that S is σB

S -autonomous.

(⇐) Assume that there does not exist S⊆V such that S is σB
S -autonomous. If

σA is not stochastically stable then it does not maximize potential. Amongst
all maximizers of potential, choose one, denoted σ∗, such that, denoting
S = {i ∈ V : σ∗i = B}, for any S′ ⊂ S, σ ′ = (σB

S′,σ
A
−S′) does not maximize

potential. Then we have that for all σS 6= σB
S ,

Potential(σ∗) = Potential(σB
S ,σ

A
−S)> Potential(σS,σ

A
−S). (6)

Note that by (2), edges between vertices playing different strategies give lower
potential than edges between vertices playing the same strategy. Therefore, (6)
implies that for any σ , σS 6= σB

S ,

Potential(σB
S ,σ)> Potential(σ), (7)

which is the definition of S being σB-autonomous. Contradiction. Therefore,
σA is stochastically stable.

Proof of Lemma 2[a] (and by analogy, [c]).

Assume that CK(S) > maxi∈S 1− γi. Note that as, by (2), edges between
vertices playing different strategies give lower potential than edges between
vertices playing the same strategy, S is σA

S -autonomous if and only if for all
S′ ⊆ S,

Potential(σA
S ,σ

B
V\S)> Potential(σA

S\S′,σ
B
S′,σ

B
V\S). (8)
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Substituting from (2),

Potential(σA
S ,σ

B
V\S)−Potential(σA

S\S′,σ
B
S′,σ

B
V\S) (9)

= ∑
i∈S′

d(i,V \S)(γi−1)+ ∑
i∈S′

d(i,S\S′)(γi)+ ∑
i, j∈S′

(γi + γ j−1).

> d(S′,V \S)
(

min
i∈S′

γi−1
)
+d(S′,S\S′)

(
min
i∈S′

γi

)
+d(S′,S′)

(
2min

i∈S′
γi−1

)
.

Now,

CK(S)> max
i∈S

1− γi = 1−min
i∈S

γi, (10)

so by definition of CK(S), we have, for all S′ ⊆ S,

d(S′,S)
d(S′)

> 1−min
i∈S

γi (11)

=⇒ d(S′,S)−d(S′)
(

1−min
i∈S

γi

)
> 0

=⇒ d(S′,S)−d(S′)
(

1−min
i∈S′

γi

)
> 0

=⇒ d(S′,S\S′)+d(S′,S′)︸ ︷︷ ︸
=d(S′,S)

−
(
d(S′,V \S)+d(S′,S\S′)+2d(S′,S′)

)︸ ︷︷ ︸
=d(S′)

(
1−min

i∈S′
γi

)
> 0

=⇒ d(S′,V \S)
(

min
i∈S′

γi−1
)
+d(S′,S\S′)

(
min
i∈S′

γi

)
+d(S′,S′)

(
2min

i∈S′
γi−2

)
> 0.

So (9) and (11) together imply that for all S′ ⊆ S,

Potential(σA
S ,σ

B
V\S)−Potential(σA

S\S′,σ
B
S′,σ

B
V\S)> 0, (12)

which implies (8), so S is σA
S -autonomous.
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Proof of Lemma 2[b] (and by analogy, [d]).
Assume that S is σA

S -autonomous. Then for all S′ ⊆ S, (8) holds, so

Potential(σA
S ,σ

B
V\S)−Potential(σA

S\S′,σ
B
S′,σ

B
V\S)> 0 (13)

=⇒ ∑
i∈S′

d(i,V \S)(γi−1)+ ∑
i∈S′

d(i,S\S′)(γi)+ ∑
i, j∈S′

(γi + γ j−1)> 0

=⇒ d(S′,V \S)
(

max
i∈S′

γi−1
)
+d(S′,S\S′)

(
max
i∈S′

γi

)
+d(S′,S′)

(
2max

i∈S′
γi−1

)
> 0

=⇒ d(S′,S)−d(S′)
(

1−max
i∈S′

γi

)
> 0 [by similar algebra to (11)]

=⇒ d(S′,S)−d(S′)
(

1−max
i∈S

γi

)
> 0

=⇒ d(S′,S)
d(S′)

> 1−max
i∈S

γi,

which implies that

CK(S)> 1−max
i∈S

γi = min
i∈S

1− γi. (14)

Proof of Corollary 1.
Note that

min
i∈SA

γi = γA = max
i∈SA

γi, min
i∈SB

γi = γB = max
i∈SB

γi. (15)

Therefore, by Lemma 2[a,b], SA is σA
SA-autonomous if and only if CK(SA)>

1− γA.
Similarly, by Lemma 2[c,d], SB is σB

SB-autonomous if and only if CK(SB)> γB.

So SA is σA
SA-autonomous and SB is σB

SB-autonomous if and only if CK(SA)>

1− γA and CK(SB)> γB.
By Lemma 1[a], SA is σA

SA-autonomous and SB is σB
SB-autonomous if and only

if σP is the unique stochastically stable state.
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Proof of Lemma 3[a] (and by analogy, [b]).
We have

Pl(S) =
d(S,S)
d(S)

> max
i∈S

γi (16)

=⇒ d(S)max
i∈S

γi−d(S,S)< 0.

Now the potential difference between σA and (σB
S ,σ

A
V\S) equals

Potential(σA)−Potential(σB
S ,σ

A
V\S) (17)

= ∑
i∈S

d(i,V \S)γi + ∑
i, j∈S

γi + γ j−1

≤ d(S,V \S)max
i∈S

γi +d(S,S)
(

2max
i∈S

γi−1
)

= (d(S)−2d(S,S))︸ ︷︷ ︸
=d(S,V\S)

max
i∈S

γi +d(S,S)
(

2max
i∈S

γi−1
)

= d(S)max
i∈S

γi−d(S,S)

<︸︷︷︸
by (16)

0.

Therefore, σA does not maximize potential and is thus not stochastically stable.
Consider σS that maximize potential given σV\S = σA

V\S. Consider such a σS,
denoted σ∗S , such that, denoting S∗ = {i ∈ S : σ∗i = B} ⊆ S, for any S′ ⊂ S∗,
σ ′ = (σB

S′,σ
A
−S′) does not maximize potential. Then we have that, for all

σS∗ 6= σB
S∗ ,

Potential(σB
S∗ ,σ

A
−S∗)> Potential(σS,σ

A
−S∗). (18)

Note that by (2), edges between vertices playing different strategies give lower
potential than edges between vertices playing the same strategy. Therefore, (6)
implies that for any σ , σS∗ 6= σB

S∗ ,

Potential(σB
S∗,σ)> Potential(σ), (19)

which is the definition of S∗ being σB-autonomous.
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Proof of Theorem 1.

As preferences are assumed to be ordinally diverse, by Definition 3, there
exists φ < 1/2 such that P[(0,φ)] =: ρ > 0.

As {Γk}k∈N+ is corpulent, by Definition 2 there exists l such that for all n∈N+,
there exists k̄(n) such that for k ≥ k̄(n) we can choose non-intersecting sets
{Sm}1≤m≤n, |Sm| ≤ l such that Pl(Sm)≥ φ .

For given Γk, Sm, as |Sm| ≤ l, the probability that all i ∈ Sm have γi < φ , and
hence φ > maxi∈Sm , is bounded below by ρ l > 0. The probability that this
holds for at least one such Sm is thus bounded below by 1− (1−ρ l)n for k≥ k̄.
This probability approaches one as n→ ∞.

So, with probability approaching one as k→ ∞, there exists Sm ⊆Vk such that
Pl(Sm)≥ φ > maxi∈Sm γi, and by Lemma 3, σA is not stochastically stable. A
similar argument holds for σB.
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