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Abstract: Economic agents are not always rational or farsighted and can make decisions according
to simple behavioral rules that vary according to situation and can be studied using the tools of
evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary
forces. Paying particular attention to the work of young researchers, this essay surveys the progress
made over the last decade towards understanding these phenomena, and discusses open research
topics of importance to economics and the broader social sciences.
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1. Introduction

This essay surveys recent work in evolutionary game theory, primarily as it relates to the social
sciences, with particular attention paid to the work of young researchers. The intended audience
is current and potential researchers in evolutionary game theory, as well as a broader audience of
interested readers whose specialisms lie in other fields. Evolutionary methods consider how a state
variable changes over time. The state variable can be a biological or cultural trait or a profile of strategies
in a game. The process by which it changes can be survival of the fittest, imitation or optimization
arising from some deliberative rule. Thus, axioms on behavior and decision making are theoretically
postulated and can be empirically tested. These axioms lead indirectly to predictions of medium and
long run outcomes. This contrasts with fixed point solution concepts, such as Nash equilibrium or the
Core, in which axioms on behavior are explicit restrictions on outcomes. In evolutionary game theory,
behavioral rules and outcomes are distinct. The broad open spaces between behavior and outcomes
are where evolutionary game theorists go to play.

1.1. The Shadow of Nash Equilibrium

To some, the period of intense activity in evolutionary game theory in the mid to late 1990s
had two goals, firstly to justify Nash equilibrium and secondly to give some consistent and simple
selection criterion for favoring some Nash equilibria over others. See Samuelson [303] for a brief
description of this perspective. The author of the current survey sees such an approach as an exercise
in begging the question. There are games for which no reasonable behavioral rule leads to Nash
equilibrium (see Section 7.6). Moreover, even if we consider games for which constructing some
behavioral rule that leads to Nash equilibrium is easy, there also exist alternative behavioral rules
that do not lead to Nash equilibrium. Whether these rules are realistic is ultimately an empirical
question, the answer to which can be determined independently of whether or not they lead to Nash
equilibrium. Furthermore, different rules may lead to different outcomes and the rule that is applied
may be sensitive to context. Again, this is an empirical question. Finally, a given Nash equilibrium
might arise from many processes, even, as we shall see later in this survey, ones in which players are
unaware of the existence of other players. Hence, in contrast to evolutionary models, the implications
of an assumption of Nash equilibrium for out-of-equilibrium behavior are imprecise.

1.2. Renaissance and the Scope of This Survey

The author believes that the evolutionary approach is interesting simply because it is often the
correct approach. The world comprises decision makers that are not always far sighted and make
decisions according to basic heuristics that vary according to situation. Increasingly many interactions
are with other parties who we have never met and know nothing about. Simple rules of decision
making can lead to complex social phenomena, as institutions and social facts emerge, compete and
disappear. The individual can be simple, but society will still be complex. High quality, book length
treatments of such methods, varying in technical and conceptual breadth and depth, can be found in
Bowles [68], Samuelson [301], Sandholm [306], Weibull [353], Young [363].

Inspired by such logic, away from the spotlight, a substantial body of researchers has continued
to work on evolutionary game theory in the social sciences, taking it in interesting and sometimes
unexpected directions. A disproportionate number of these researchers are relatively young, and this
survey aims to draw attention to their work. The majority of work discussed at length in this survey
was published over the last ten years by researchers awarded a doctoral degree in 2007 or later, though
there are many exceptions to this rule.
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It is intended that the topics covered here are treated with enough depth to leave the reader
with a clear idea of the relevant concepts. Research is organized according to major themes and
connections between studies both within and between these themes are remarked. Whilst the survey
is predominantly neutral and descriptive, discussion of important growth areas (see Section 10) and
open topics (see Open Topics throughout text) is necessarily subjective. The author values the reader’s
disagreement in such matters. Naturally, the reader who wishes to go deeper should refer to the
cited papers themselves, but the presentation here may assist in finding relevant and interesting
topics. Furthermore, although we discuss a good deal of literature across many areas, no claim to
completeness is made. In particular, once one has adopted an evolutionary perspective, almost any
empirical data or hypothesis can be discussed with reference to evolutionary models. For concision,
Section 9 restricts attention to a selection of empirical work explicitly related to such models.

1.3. Structure of the Survey

The structure of the survey is informed by the observation that a model of behavior must, either
explicitly or implicitly, answer the question who does what to whom and in what circumstances? All topics
discussed here can be thought of with reference to this question. A summary is provided in Figure 1.

Section 2 addresses who, considering the identity of agents, who may be individual humans,
groups of friends, firms or even wind turbines. Methods for analyzing multiple levels of agency are
considered, as are the implications of such agency, the question of what kind of agency might be
expected to evolve, and links between individual and collective agency.

Section 3 addresses to whom, considering the identity of other agents with whom a given agent
interacts. The implications of assortativity in interaction are considered, as are methods by which it
might arise, such as agents choosing directly to interact with those similar to themselves, choosing
institutions that determine their interactions, or deciding to forsake uncooperative partnerships.

Sections 4–7 address what. Section 4 considers the evolution of traits that affect behavior and the
evolution of culture, both embodied at the individual level and embodied at the collective level in
conventions.

Section 5 considers economic applications in areas such as market selection, the learning of rational
expectations equilibria, price dispersion, and fluctuations in aggregate inputs and productivity.

Section 6 considers the relationship between evolutionary game theory and cooperative game
theory, addressing topics such as core convergence and selection, matching problems and the evolution
of bargaining solutions.

Section 7 surveys work on a broad range of dynamics, including reinforcement learning, imitation,
best experienced payoff dynamics, best and better response dynamics, dynamics for games with
continuous strategy sets and completely uncoupled dynamics.

Section 8 considers methodology and technical results for perturbed dynamics, stochastic stability,
evolutionary stability and systems of distributed control.

Section 9 discusses empirical work, divided into studies relevant to best and better response
dynamics, imitation, completely uncoupled dynamics and the nature of errors in perturbed dynamics.

Sections of the survey can be read independently. However, to balance ease and clarity of reading,
specialist terminology is precisely defined only once and referenced in the remainder of the text where
it is appropriate to do so.

2. Agency—Who Makes Decisions?

An important consideration when modeling (human) action is the question of the identity of the
agent that chooses an action or actions. We can think of many possible agents that might take actions.
An agent could be an individual, a group of individuals, a module within a mind that contains many
such modules, or even a piece of software. In particular, collaborative decision making is widespread
amongst humans and something that humans are especially good at relative to other primates. In the
words of Michael Tomasello:
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Who does what to whom ?
Agency
Section 2

Assortativity
Section 3

Evolution of behavior
Section 4

Economic applications
Section 5

Evolutionary Nash Program
Section 6

Behavioral dynamics
Section 7

General methodology
Section 8

Empirics
Section 9

Figure 1. Structure of this survey. A model of behavior answers the question who does what to
whom and in what circumstances? Explicit rules of behavior address the circumstances of every state.
Equilibrium models address the circumstances of equilibrium. The remaining parts of the question are
addressed by the sections of this survey as given above.

“... humans are able to coordinate with others, in a way that other primates seemingly are not,
to form a “we” that acts as a kind of plural agent to create everything from a collaborative
hunting party to a cultural institution.”—Tomasello [342]

From an economic perspective, an agent could be a consumer, a family, or a firm. From a
distributed control perspective, an agent might be a wind turbine or a group of wind turbines (Marden
and Shamma [223]).

Evolutionary game theory studies adaptive rules that govern behavior. If realistic behavior
involves decisions being made at multiple levels of agency, then this can be easily incorporated into
such a rule. Consider a set of individuals N, such that individual i ∈ N adopts some strategy si ∈ Si.
Let S be the set of strategy profiles, such that S =×i∈N Si. When strategy updating occurs, instead of
an individual i ∈ N following an individualistic strategy updating rule of the form

Ri : S→ ∆Si, (1)

we can have a coalition T ⊆ N update sT ∈ ST =×i∈T Si by following a collective strategy updating
rule of the form

RT : S→ ∆ST . (2)

For example, an individual better response dynamic mandates that i ∈ N chooses a strategy that
is at least as good for himself as his current strategy, holding fixed the strategies of other players. That
is, he chooses an individual better response from the set

suppRi(s) = {s∗i ∈ Si : πi(s∗i , s−i) ≥ πi(s)}. (3)

For a coalitional better response dynamic this can be generalized so that T ⊆ N chooses a strategy
subprofile that weakly benefits all of its members. That is, coalition T chooses a coalitional better
response from the set

suppRT(s) = {s∗T ∈ ST : ∀i ∈ T, πi(s∗T , s−T) ≥ πi(s)}. (4)
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Figure 2. Coalitional Stochastic Stability. There are three states, x, y and z, all assumed to be rest
points of an individualistic best response dynamic. Arrows between states indicate, for the most
probable transition path from one state to another, e, the number of random errors on this transition
path, and c, the size of the largest coalition that makes a coalitional response on this path.

Each of these rules can be made into a best response by the addition of a Pareto condition. Furthermore,
such rules can be perturbed by errors in strategy choice, thus making applicable the methods and tools
of perturbed adaptive dynamics and stochastic stability analysis Foster and Young [121], Freidlin and
Wentzell [125], Kandori et al. [191], Young [361].

Strategy updating rules that incorporate collective agency have been used before (e.g.,
Feldman [117], Green [142]). Recently, however, substantial progress has been made in understanding
how these rules can be used, the implications of such rules, and whether the ability of individuals to
participate in such collective behavior is likely to evolve.

Open Topic 1. The above discussion relates to multiple agency variants of best and better response dynamics.
Multiple agency variants of other dynamics are still to be explored. For example, at some weddings, after the
marrying couple has started dancing, other couples join the dancing. Some couples join the dancing early, while
others wait until a large proportion of people are dancing, so we have something like a collective (pairwise)
version of the threshold model of Granovetter [141]. Another example is a group of companies who collectively
imitate successful contractual arrangements used by other groups of companies.

2.1. Advances in Methodology

2.1.1. Coalitional Stochastic Stability

It is clear that behavior under a dynamic with frequent coalitional strategy updating may differ
from behavior under a purely individualistic dynamic. However, Newton [264] notes that even in
contexts in which collective agency is infrequent, it may still be more frequent than the kind of errors in
strategy choice that determine long run outcomes under perturbed adaptive dynamics. To give some
background, the literature on perturbed adaptive dynamics and stochastic stability (see Section 4.2.1
for technical definitions) builds upon the fact that if individuals usually follow some behavioral rule,
but occasionally make an error and deviate from this behavioral rule, then these small errors can have
a large effect on long run outcomes. Similarly, the idea behind coalitional stochastic stability is that
small probabilities of collective agency can have a large effect on long run outcomes.

To fix ideas, consider a situation in which in any given period, with probability 1− εb2 − εb3 − εbe ,
0 < b2 < b3 < be, some player chooses an individual best response; with probability εb2 , some pair of
players makes a coalitional best response; with probability εb3 , some trio of players makes a coalitional
best response; and with probability εbe , some player makes an error and chooses a strategy randomly.
For small values of ε, it should be clear that coalitional best responses occur much more frequently than
random errors. Moreover, b2 < b3 implies that coalitional best responses by coalitions of size two occur
much more frequently than coalitional best responses by coalitions of size three. If, in addition, we let
b2 � b3 � be, then identically to standard stochastic stability analysis, random errors can be used to
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select between recurrent classes of the process without random errors. Consider the example given in
Figure 2, in which x, y and z are the rest points of an individualistic best response dynamic. In this
example, one random error is required to move from x to {y, z}, but two random errors are required to
move in the opposite direction, so in the long run, the state will usually be in {y, z}. However, unlike
the standard model, once a recurrent class of the process without random errors is selected, further
selection can be obtained. Coalitions of size three are required for transitions from z to y, whereas
transitions from y to z only require coalitions of size two, which are much more likely. Therefore,
in the long run, the process will spend most of the time at state z. Thus, a hierarchy of rare behaviors
allows iterative ‘drilling down’ to select progressively smaller subsets of the strategy space. Note that
changes to the ordering of rare behaviors, such as considering b2 > b3 for example, do not present any
additional technical difficulties.

2.1.2. Coalitional Logit Choice

Sawa [312] describes a perturbed coalitional best response rule whereby at period t, some coalition
T ⊆ N is randomly chosen and has the opportunity to accept or reject a randomly chosen alternative
strategy subprofile for itself. Let the current strategy profile be st−1 = (st−1

T , st−1
−T ) and the proposed

alternative subprofile be s′T . Let each i ∈ T independently accept the proposed new strategies with
probability given by the logit choice rule

Prob[i ∈ T accepts s′T given s] =
e

1
η πi(s′T ,st−1

−T )

e
1
η πi(s′T ,st−1

−T )
+ e

1
η πi(st−1)

, (5)

where η > 0. If every i ∈ T accepts the proposal, then the strategy profile becomes st = (s′T , st−1
−T ). If at

least one i ∈ T does not accept, then the strategy profile remains st = st−1.
With regards to perturbed adaptive dynamics, the salient feature of the individualistic logit choice

rule is that the cost (the exponential decay rate of the probability as η → 0, see Section 4.2.1) of playing
a given non-best response is equal to the expected payoff difference between playing a best response
and playing the non-best response in question. Considering T = {i} in (5), this corresponds to the cost
of the transition from st−1 to (s′T , st−1

−T ) being equal to

max
{

0, πi(st−1)− πi(s′T , st−1
−T )

}
. (6)

Now, when T is not a singleton, the probability that every i ∈ T accepts according to (5) is given by
these probabilities being multiplied together. Note that each of the individual probabilities takes into
account the proposed strategy change by all members of T. That is, this is not simply the probability of
every member of T switching as per an individualistic logit rule. The exponential decay rate of this
combined probability is then the sum of the exponential decay rates of the individual probabilities.
That is, the cost of the transition is

∑
i∈T

max
{

0, πi(st−1)− πi(s′T , st−1
−T )

}
. (7)

This simple expression is easy to work with, although it should be noted that the clean characterization
of stochastically stable states of potential games under individualistic logit choice (Blume [59]) does
not transfer to coalitional settings (see Section 2.4 for a discussion of potential and agency).

2.1.3. Frequent or Infrequent Coalitional Behavior

One difference between the models of Newton [264] and Sawa [312] is that the former considers
infrequent coalitional choice in dynamics, whereas the latter makes no assumption about frequency.
An implication is that stable cyclic behavior will arise more frequently under the latter dynamic,
precisely in situations in which there is some conflict between different levels of agency. The classic
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C D
C 1 + β 0
D 1 + β + γ 1

Figure 3. Two player prisoner’s dilemma. Let β, γ > 0. For each combination of C and D, entries give
payoffs for the row player. β is the payoff advantage of (C, C) over (D, D). γ is the gain from defecting
on a cooperator. The gain from defecting on a defector is normalized to 1.

A B
A 1 + β 0
B β − α 1

(i) General

A B
A 1 + α 0
B 0 1

(ii) β = α

A B
A 0 0
B −(1 + α) 1

(iii) β = −1

Figure 4. Two player coordination game. For each combination of A and B, entries give payoffs for
the row player. Let α > 0 so that (A, A) is the risk dominant Nash equilibrium. Panel (i): general
payoffs up to affine transformation; Panel (ii): zero payoff for miscoordination; Panel (iii): a stag hunt.

example of a game with conflict between different levels of agency is the prisoner’s dilemma, in which
the tension between individual agency (defection as a dominant strategy) and collective agency (every
pure strategy profile is efficient except for joint defection) defines the dilemma. Figure 3 gives a
parameterized prisoner’s dilemma that will be occasionally referred to for the remainder of this survey.
In prisoner’s dilemmas, the model of Newton [264] will select (D, D) as coalitionally stochastically
stable, whereas in the model of Sawa [312], cyclic behavior will be stable.

In many situations, including many of the examples in Newton [264], there is no tension between
different levels of agency and qualitative results do not differ according to whether coalitional behavior
is rare or frequent. In particular, incentives at all levels of agency are perfectly aligned at a strong
equilibrium (Aumann [26]), a strategy profile at which there is no profitable coalitional deviation
available to any subset of players. Avrachenkov and Singh [27] show that, if every subset of players
can coalitionally update its strategies and, when it does so, will choose a coalitional better response
with probability 1− ε, but with probability ε will choose from a full support distribution on all possible
non-best responses, then any strong equilibrium is stochastically stable.

2.2. Implications of Collective Agency

The implications of collective agency for evolutionary models in economics have only recently
begun to be explored. Nevertheless, some interesting results have emerged. Some of these results
(Newton [265], Serrano and Volij [320]; results on matching) relate to the Evolutionary Nash Program,
so discussion of these is deferred until Section 6.

2.2.1. Coordination Games on Networks.

Newton and Angus [259,260] consider players as vertices on a graph (a ‘network’) who each play
a strategy A or B. A player’s payoff is the sum of his payoffs from playing his strategy against each of
his neighbors in the game in Figure 4ii. They study the effect of coalitional behavior on the speed of
dispersion of strategy A, the efficient strategy, starting from a state in which all players play B. It turns
out that the introduction of coalitional behavior can have either of two effects, (a) a conservative
effect (Figure 5i,ii), by which coalitional behavior greatly slows the adoption of the new strategy;
or (b) a reforming effect (Figure 5i,iii), by which coalitional behavior greatly speeds the adoption of the
new strategy.

Newton et al. [263] consider a similar setup, but with similar payoffs to the Stag hunt in Figure 4iii,
and analyze how the size of teams in an organization (cliques on a network) affects long run behavior
when small groups of players within a team meet to adjust their strategies. Large teams end up
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Figure 5. Conservative and reforming effects of collective agency. Grey vertices are playing strategy
A, white vertices are playing B, as are all vertices not shown. Payoffs are given by the game in Figure 4ii.
Panel (i): an initial strategy profile. Without coalitional behavior, it is not a best response for any player
to change strategy as long as α < 2. Panel (ii): Conservative effect. From the profile in Panel (i), if α < 1,
then all of the members of coalition T1 gain by switching to B. Panel (iii): Reforming effect. From the
profile in Panel (i), if α > 1/2, then all of the members of coalition T2 gain by switching to A.

playing A as the risk-dominance effect of the classic individualistic model (Young [361]) outweighs
the coordination effect of collaborative choice. Medium size teams end up playing B for the opposite
reason. The behavior of small teams depends critically on their neighbors within the organization.

Note that in the individualistic model, as long as behavior only depends on payoff differences
(either ordinal or cardinal) and not absolute payoff values, behavior in all of the games in Figure 4 is
identical: β is a redundant parameter. This is not the case in the presence of collective agency. The link
between payoffs and agency is explored in depth in Newton and Sercombe [262], which is discussed
further in Section 2.4.

2.2.2. Matching

If a coalition of size two decides to adjust its behavior to the mutual benefit of its members then
it acts as a collective agent. Coalitions of size two are the objects considered by notions of pairwise
stability in networks (see, e.g., Jackson [185]), a special case of which is pairwise stability in matching
models. For example, in Roth and Vande Vate [293], a man and a woman meet randomly and match
with one another if and only if they prefer one another to their current partners. Such a rematching is
an instance of collective agency, as neither the man nor the woman can effect such a rematching on
their own.

In recent years, there has been many studies on evolutionary dynamics in matching problems.
Similarly to Roth and Vande Vate [293], the main results from these studies tend to concern the
convergence of the dynamics to particular solutions from cooperative game theory. As such, they are
part of the Evolutionary Nash Program and will be discussed at length in Section 6.

2.2.3. Social Choice Rules

Okada and Sawa [273] examine an evolutionary model in which the policy followed by a collective
is determined by majority (or supermajority) voting by individuals. They consider policies that emerge
under given voting rules. A voting rule is a way of choosing collectively. In fact, it can be regarded as a
strong way of doing so because the wishes of individuals in a minority are disregarded. It follows that,
in this sense, the weakest voting rule is the one that requires all individuals to agree: the unanimity
voting rule. Under the unanimity rule, the only way a new policy x can defeat a status quo policy y
is if every voting individual weakly prefers x to y. This is a coalitional better response rule based on
pairwise comparison and can be compared to Expressions (2) and (4) at the beginning of Section 2.
Okada and Sawa [273] find that when their voting dynamic is perturbed uniformly, Condorcet winning
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policies (policies that beat all others under simple majority rules) are stochastically stable. Furthermore,
if the voting rule is the unanimity rule, then, under coalitional logit choice, Borda (points based
rankings, de Borda [97]) winning policies are stochastically stable.

2.3. The Evolution of Collective Agency

It is possible to ask whether the ability of multiple individuals to act as a single collective
agent is an ability that will be evolutionarily selected for. This may at first seem like a question
with an easy answer. After all, we are considering the ability to participate in joint behavior that is
mutually beneficial for all concerned. However, such a rush to conclusions proves to be ill founded for
several reasons.

Firstly, as discussed above, the ability to participate in collective agency may slow the spread
of efficient behavior on a network (Newton and Angus [259,260]). This means that populations in
which such an ability is widespread may find that new technology is adopted more slowly than
in populations in which such an ability is rare or absent. If this is the case, then under reasonable
assumptions on migration and conflict, a group selection model, in which some selection occurs at the
population (the ‘group’) level when high technology populations invade and replace low technology
populations, can lead to selection against the ability to participate in collective agency (Angus and
Newton [22]).

Secondly, in some situations, it may be beneficial to be a type of individual that cannot participate
in collaborative behavior (Newton [267]). One case is when there exists the opportunity to free ride
on the collaboration of others in such a way that free riders do better than those who collaborate.
An example of this is when Alice and Bob collaborate to hunt an animal but Colm, lacking the ability
to collaborate, can still eat the leftover meat without exposing himself to the risks of the hunt. Another
case is when there is positive assortativity in types (see Section 3) and the externalities of collaboration
are negative. An example of this is when Alice and Bob can collaborate to attack another individual,
but due to positive assortativity, this individual is likely to also be a collaborative type. Consequently,
those who cannot collaborate benefit from being less likely to be subject to such negative externalities.

Finally, it may be the case that people mistakenly think that they are collaborating with a partner
when the partner does not in fact have the ability to collaborate. Rusch [297] examines this possibility
in a model in which players play a variety of symmetric, two strategy, two player games, with the share
of any given game given by a probability measure. He finds that as long as the prisoner’s dilemma
(Figure 3) is not too likely under this measure, then the ability to collaborate will be selected for.

2.4. Links between Individual and Collective Agency

Nax and Perc [249] discuss payoff-based learning in public goods games. This process is completely
uncoupled (see Section 7.6), relying neither on opponents’ payoffs nor their prior actions. They consider
how simultaneous errors by multiple players can end up benefiting the error-making players. Although
contribution to a public good may be suboptimal from an individualistic perspective, payoffs may
increase when several players simultaneously start to contribute. Hence, profitable coalitional strategy
changes are replicated by the errors of individuals. To replicate coalitional moves by larger numbers of
players requires a larger number of mistakes and so such moves are relatively less likely. This is similar
to the assumption made in Section 2.1.1, although there it is an assumption, whereas here it emerges
endogenously. A Nash equilibrium is k-strong if there exists no profitable coalitional deviation for a
coalition of any size up to and including k. The authors show that long run behaviour depends on the
values of k for which the equilibria in their model are k-strong.

The evolution of preferences literature often follows the indirect evolutionary approach (Güth
and Kliemt [143]) and assumes an outcome given the types of the players. This outcome is usually
assumed to be a Nash equilibrium and, in the tradition of Harsanyi [148], types are usually taken
to specify the payoffs of players. Examples of such models can be found in Dekel et al. [99],
Heifetz et al. [154],Samuelson [302], Sethi and Somanathan [323]. In general, a change in the type
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of only one player can lead to a change in everyone’s behavior via the assumption of equilibrium.
For example, in games of strategic substitutes (e.g., Cournot competition), if the type of one player
changes so that he prefers to play higher actions than he did before, the equilibrium actions of the other
players will decrease. However, Herold [165] gives a model in which sufficient numbers of rewarder
or punisher types are required to induce a change in equilibrium behavior. When there are sufficient
rewarders playing the game, the change in players’ behavior induced by the assumption of equilibrium
benefits all players. Such a change may benefit rewarders less than non-rewarders in a similar way
that collaborators may benefit less from collaboration than non-collaborators do in Newton [267],
discussed in Section 2.3. However, in both these papers, the rewarder/collaborator type is more likely
to find themselves in a group where there are a sufficient number of rewarder/collaborator types to
induce the change in behavior. This observation lies behind both Proposition 1 of Herold [165] and
Theorem 1 of Newton [267]. A major difference between the two approaches is that the equilibrium
approach assumes that non-rewarder types change their behavior as a consequence of rewarders in
the population, whereas non-collaborator types may, but are not required to, alter their behavior in
response to collaboration.

A coordination game like that in Figure 4i played on a network admits an exact potential function
(Monderer and Shapley [240]). A potential function retains information from individual payoff
functions on the individual incentives of players, aggregating them into a single function. Young [368]
calls a set of players autonomous if, fixing the strategies of all other players and regardless of what
these strategies are, potential is maximized when all of the players in the set play A. Another way of
thinking of this, as explored further in Section 4.2.2, is that it will be stochastically stable under logit
choice for players in any such set to play A. Newton and Sercombe [262] link autonomy driven by
a potential function, potential autonomy, to autonomy driven by collective agency, agency autonomy.
A set of players is agency autonomous if, fixing the strategies of all other players and regardless of
what these strategies are, players in the set would all gain from a simultaneous switch by every player
in the set from B to A. It is shown that every potential autonomous set on every network is agency
autonomous if and only if β ≥ 1 + α. Conversely, every agency autonomous set on every network is
potential autonomous if and only if β ≤ α/2. That is, the payoffs of the game provide a connection
between aggregation of agency and aggregation of incentives via a potential function.

Open Topic 2. Consider the mind as software that applies an algorithm to solve problems. This software is
modular, in that different sections of code achieve different tasks, but nevertheless communicate with one another
towards some overall goal. In a similar manner, two people may collaborate and their two minds together be
considered as one piece of software with two distinct modules that communicate. It would be interesting to see
an evolutionary game theoretic model of choice based on this hierarchy (parts of a mind, whole mind, collective
‘mind’) in which the relationship between the lower and middle level of the hierarchy is qualitatively similar to
the relationship between the middle and upper level.

3. Assortativity—With Whom Does Interaction Occur?

Assortativity is a tendency for agents to engage in a disproportionate share of their interactions
with those who are either similar in a trait (positive assortativity) or dissimilar in a trait (negative
assortativity). This can be as simple as spending more time with members of one’s family than
one does with random strangers. Although assortativity and associated effects on behavior have
been studied for a long time (see, e.g., Eshel and Cavalli-Sforza [112], Wilson and Dugatkin [355]),
the relationship between the two has recently been attracting increased attention from economists.
The general structure of the effects governing assortativity that are discussed in this section are given
in Figure 6.

3.1. Assortativity and Preferences

There has long been interest in the relationship between assortativity and selection for altruistic
preferences, often modeled as a predilection to play C in a prisoner’s dilemma (Figure 3) in which
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Figure 6. Assortativity in matching. From a population, individuals are matched into groups to
interact (Section 3.3). This matching may be affected by the traits of the individuals (Section 3.2.1)
and also by institutions at a societal level (Section 3.2.2). Individuals may be able to choose to join
institutions (Section 3.2.3) and the institutions may have their own preferences over their membership.
Note that the institution in the Figure is highly positively assortative in that it matches individuals
with other individuals of a similar type. Individuals may have the option to interact multiple times
with those with whom they are matched, or to leave them and seek new partners (Section 3.4).

payoffs represent fitness. All evolutionary models of which the author is aware that work in favor of
selection of such preferences rely on inducing positive assortativity in behavior. That is, for playing
C to be profitable, it must be played a disproportionate amount of the time against C. Examples
include repeated interaction (Trivers [344]), kin-selection (Fisher [119], Hamilton [145]) and group
selection (Bowles [70], Choi and Bowles [89], Haldane [144]). For an extensive and detailed discussion
of cooperation, the reader is referred to Bowles and Gintis [67], and for a specialized review of parochial
altruism theory, to Rusch [296].

More recently, Alger and Weibull [6,7] have considered the relation of assortativity to a broader
class of preferences. They study the evolution of preferences when players are matched to play a two
player game. Payoffs in the game correspond to fitness. Types of players correspond to preferences
over outcomes in the game. The matching protocol is exogenously given and exhibits a fixed amount of
assortativity. Specifically, consider an incumbent type θ which comprises a 1− ε share of the population
and an invading type τ which comprises a ε share of the population. Let Pr[τ|τ, ε] be the probability
that a τ type is matched with a τ type. Let

lim
ε→0

Pr[τ|τ, ε] = σ, (8)

where σ is independent of τ. That is, any invading mutant type τ that appears in small numbers will
be such that any given mutant will be matched to another mutant with probability approximately
equal to σ and matched to an incumbent with probability approximately equal to 1− σ. This use of a
coefficient of assortativity, σ, follows Bergstrom [42].
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If σ = 1, then any incumbent population that fails to achieve efficient payoffs will be vulnerable
to invasions of mutants who play efficiently against one another. Conversely, if σ = 0, then any
incumbent population whose members do not behave in a way consistent with individual fitness
maximization will be vulnerable to invasions of mutants who maximize individual fitness. This
logic extends to intermediate values of σ, so it transpires that the most stable behavior accords with
preferences that are a weighted average of fitness maximization and efficient symmetric choice:

u(x, y) = (1− σ)π(x, y) + σ π(x, x), (9)

where the weighting given to efficient behavior is increasing in assortativity σ. These arguments are
expanded to m player symmetric games in Alger and Weibull [8]. See Section 3.3 for a discussion of
assortativity of types in games with more than two players.

The preferences described in (9) were earlier derived in Bergstrom [41] for the special case of
games between siblings and stability of preferences to small invasions of dominant mutant genes in a
model of sexual reproduction. In this case, a mutant has a probability of one half of having a mutant
sibling, equivalent to a level of assortativity in interaction of σ = 1/2. The cited paper also gives results
for the case of invasions of recessive mutant genes and compares these stable behaviors to preferences
that correspond to Hamilton’s coefficient of relatedness (Hamilton [146,147]), which in siblings is equal
to one half. Alger and Weibull [5] also make such a comparison for the specific case of altruism.

Hamilton’s rule (Hamilton [146]) states that a trait that reduces the fitness of each of its holders
by c and gives a combined fitness benefit of b to others can spread in a population if and only
if rb ≥ c, where r is the coefficient of relatedness, the probability that any given recipient of the
benefit also holds the trait. Van Veelen [345] shows that if fitness is given by the payoffs of a public
goods game, the trait in question is contributing to the public good, and interaction takes place in
groups drawn from the general population (see Section 3.3), then Hamilton’s rule only applies if the
benefits and costs of contribution are independent of the number of other contributors in the group.
Nowak et al. [272] draw on these insights as part of a general critique of the usefulness of the concept
of inclusive fitness, a critique that has in turn been subject to intense criticism (e.g., Abbot et al. [1],
Ferriere and Michod [118], Herre and Wcislo [166], Strassmann et al. [338]).

Bilancini et al. [46] consider the evolution of cooperation in a population comprised of individuals
of two types. Each individual is matched to play a prisoner’s dilemma in which he can either cooperate
or defect. Individuals of each type suffer a payoff loss from interacting with individuals of the
other type. Such a desire to interact with those similar to oneself is known as homophily. Interaction
is assumed to be positively assortative (per the specification of Cavalli-Sforza and Feldman [81])
according to strategies played but not according to types. If payoff losses from interacting with
individuals of the other type are sufficiently large, it is then evolutionarily stable for one type to play
C and the other type to play D, with individuals of each type choosing their strategy in order to
minimize their chance of being matched with an individual of the other type. That is, they use positive
assortativity according to strategy to induce positive assortativity according to type.

Note that the preferences described in (9) are defined for a fixed level of assortativity that
applies to any invading type. The case of differing values of σ for alternative invading types will be
considered next.

3.2. Evolution of Assortativity

3.2.1. Individual Types and Assortativity

Following work in the biology literature on the evolution of assortativity (e.g., Cara et al. [77],
Dieckmann and Doebeli [102], Matessi et al. [234], Otto et al. [277], Pennings et al. [279], Servedio [321]),
Newton [268] shows that under a specification of type-specific assortativity given by Cavalli-Sforza
and Feldman [81] and applied to the model of Alger and Weibull [7] discussed in Section 3.1, stability
is only possible when an incumbent population behaves efficiently and does not interact at all with
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invading τ types, thus ensuring that σ = 1 in (8). Perfectly assortative efficient behavior is not
susceptible to invasion, but everything else is. The reasons for this are that (i) unless incumbent θ

types only interact with one another, if they do not behave in a way consistent with individual fitness
maximization, then they are vulnerable to invasion by a type τ that maximizes individual fitness
and has no predilection for assorting with its own kind, and (ii) if incumbent θ types do not behave
efficiently, then they are vulnerable to invasion by a type τ that behaves efficiently and only interacts
with other τ types.

Even without assortativity in interaction, individuals can sometimes adjust their behavior so that
it correlates with the types, and therefore the behavior, of those with whom they interact. Specific
correlations are sometimes generated via the twin devices of equilibrium and preferences. For example,
Herold and Kuzmics [164] show that an incumbent type that earns more than the minmax payoff when
playing against itself can maintain stability by playing spitefully against invading mutants so as to
minimize their fitness.

In practice, the maximum assortativity based on types that can be maintained may be bounded
above, as mutants are not always easy to recognize. This has been considered in the evolution of
preferences literature (e.g., Dekel et al. [99], Heifetz et al. [154]), in which non-observability of types
reduces the possibility of assortativity in behavior according to type. That is, if Alice cannot observe
that Bob is a mutant, she cannot condition her behavior towards him on whether or not he is a mutant.
Nevertheless, high levels of assorting by phenotype (i.e., by observed behavior, not by types per se) can
plausibly be maintained by shunning and ostracism of those who exhibit unusual behavior. Moreover,
there may be gains to be had from considering different forms of recognition. Do two objects with
different charges recognize each other as they attract each other? At what point in a conversation
do two fluent English speakers recognize one another as such? Similar examples can be found in
Newton [267]. Finally, note that the cause of differing behavior and assortativity need not be genetic
and may be cultural. Types in the above models relate to individuals and hence to culture embodied
at the individual level, models of which are discussed further in Section 4.3. Further discussion of
assortativity in behavior can also be found in Section 4.1.4.

3.2.2. Institutions that Determine Assortativity

As well as varying according to individual traits, assortativity may also be embodied in
institutions and determined at a societal level, similarly to other aspects of culture (see Section 4.2).
Nax and Rigos [252] consider a model in which there are two types, each of which plays a given
strategy in a two strategy, two player game drawn from a variety of social dilemmas. Assortativity
in the matching protocol is determined by logit-style voting for higher or lower assortativity. So the
probability of an individual voting for higher assortativity is increasing in his gain from an increased
level of assortativity. This weighted majoritarian rule pushes assortativity in the direction favored
by one of the types, who then grow as a share of the population and proceed to push assortativity
even further in the same direction. Consequently, stability always involves either no assortativity
or full positive assortativity (negative assortativity is not permitted by the model). Similar results
were subsequently found in Wu [356], in a setting that considers unweighted majority voting and
restricts itself to coordination games, while allowing negative or positive assortativity. This can lead
to the stochastic stability, under a best response dynamic with uniform errors, of a Pareto efficient
but non-risk dominant equilibrium in the coordination game, as individuals who play the strategy
associated with the Pareto efficient equilibrium vote for high assortativity so as to segregate themselves
from any players who play the strategy associated with the risk dominant equilibrium.

Wu [357] gives an institutional setup in which there are equal numbers of two positions, high
and low, in a society. Individuals in high positions are matched to play a game against individuals in
low positions. The high position in the game is associated with higher payoffs than the low position.
There are two types of individual, θ, τ. Assortativity in interaction is then determined by the share
of the high positions that are held by players of each type. For example, if θ players hold all of the
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high positions and τ players hold all of the low positions, then matching will be perfectly negatively
assortative: individuals will never play against an individual of the same type. It is assumed that
the share of each type in a high position is determined not by voting, but by a form of generalized
Nash bargaining solution (Nash [246]) with the bargaining weights given by the population shares of
each type.

Wu [358] considers a similar model to the above, with a continuum of types and payoffs that are
continuous in types. The evolutionary stability of a population of a single type to invasions of slightly
different types is considered. Under majoritarian voting for who holds high positions, homogeneous
populations of any type are stable, as the incumbents, forming a majority, ensure that invaders occupy
low positions. Under the Nash bargaining solution formulation, a type is only stable if, when matched
against a slightly different type, it obtains a higher marginal benefit than the slightly different type
from being in the high position rather than the low position.

3.2.3. Choosing an Institution

Another approach to the evolution of assortativity is found in Alós-Ferrer and Buckenmaier [11].
There are two types of trader, buyers and sellers. Each period, traders either choose an institution at
which to trade or remain at the same institution as in the previous period. The role of the institution is
to partition the traders at that institution into sets for the purpose of trade. For example, one type of
institution, a bazaar, matches buyers and sellers into pairs and leaves the remaining traders unmatched.
Another type of institution, a centralized institution, matches all of the buyers and sellers into a single
set. In any case, buyers and sellers within the same set trade with each other at a price that is increasing
in the ratio of the number of buyers in the set to the number of sellers in the set. Buyers prefer
lower prices and sellers prefer higher prices. Over time, traders move between institutions and the
environment evolves. Thus, it is the the matching algorithm itself, responsible for assortment, that is
the unit of selection. The paper goes on to show that the centralized institution that matches all traders
at that institution into one set, has strong attractive properties under updating rules that satisfy certain
conditions. Thus the paper contributes to a set of papers that give results for classes of updating rule
that satisfy criteria that are plausible in the given context (see also Klaus and Newton [199], discussed
in Section 6). Note that the many to one matching of individuals to institutions is similar to the ‘college
admissions’ matching problem, evolutionary models of which will be discussed in Section 6.3.

Open Topic 3. In Section 3.2 we have seen how assortativity can arise from culture (or genes) embodied at an
individual level (e.g., avoid people with tattoos) or at a collective level (e.g., systems of schooling and university
attendance). Some collective cultures of assortativity will be subject to selection driven by individual choice as
happens in Alós-Ferrer and Buckenmaier [11] and in Carvalho [79], discussed in Section 4.4. Study of such
topics is extremely pertinent to societies with large cultural minorities and associated conflict.

3.3. Generalized Assortative Matching Protocols

Van Veelen [346] takes a general approach to exogenous assortativity. Individuals, whose types
correspond to one of two strategies, are drawn from a population and matched into groups of m
individuals to play a game. The share of each type of individual then evolves according to the replicator
dynamic. Alger and Weibull [8] (see Section 3.1) consider a similar situation in which types correspond
to a continuous space of preferences over fitness. Even more generally, Jensen and Rigos [186] consider
matching protocols that group individuals from a population to play m player, n strategy symmetric
games. Again, strategies correspond to types. Jensen and Rigos [186] refer to a population state x∗

and a matching protocol f ∗ as an evolutionary optimum if they lead to the maximum average fitness
amongst all (x, f ) pairs such that population state x is a stable state given matching rule f . It is shown
that there exists a matching protocol h such that (x∗, h) is also an evolutionary optimum and a Nash
equilibrium of a game derived from the evolutionary setup: a Nash equilibrium under a matching rule.
The result is obtained by constructing the matching rule h such that invading types that are not in the
support of x∗ are matched into groups apart from other types. Finally, Newton [267] uses a similar
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setup, allowing asymmetric games and infinite strategy sets, but with only two types, which do not
correspond to strategies but rather to the presence and absence of a behavioral trait, as discussed in
Section 2.3.

3.4. Conditional Dissociation

One way in which assortativity in interaction may be induced is by conditional dissociation, whereby
individuals, who are partnered to play a game, can choose to either remain with the same partner
for another period of play or to leave and randomly rematch with some other individual. Such an
environment can be thought of as lying somewhere between random matching every period and a
setting in which individuals play the same opponent for life.

Fujiwara-Greve and Okuno-Fujiwara [132] analyze a setting in which players are matched to
play a repeated prisoner’s dilemma but have the opportunity to conditionally dissociate every period.
Cooperation (C, C) is assumed to be efficient as measured by sum of payoffs (γ < 1 + β in Figure 3)
for most of the analysis, though the alternative possibility is considered later in the paper. The strategy
space is rich: strategies can be contingent on the entire history of play in a partnership, although
cannot be conditioned on events prior to or outside of the current partnership. Mixed strategies are
disallowed. They show the (neutral) stability of trust building strategies, in which players defect for
a fixed number of periods against their partner before they start to cooperate, following which they
continue to cooperate until one of them either dies or fails to cooperate. This initial period of defection
reduces continuation payoffs after dissociation from a partner and thus discourages defection. Positive
assortativity between types is induced as players only persist with their current partner when their
strategies complement one another. Fujiwara-Greve et al. [133] analyze a variant of this model in
which players can, each period, after observing play, furnish their opponent with a reference letter
for a small cost. If the partnership terminates due, for example, to the death of one individual, then
the other individual can take the reference letter with him. The trust building period between two
individuals who hold reference letters can then be shortened.

Vesely and Yang [350] shows that consideration of mixed strategies can make some polymorphic
neutrally stable states of the model of Fujiwara-Greve and Okuno-Fujiwara [132] no longer neutrally
stable. The reason is that the polymorphism in the prior model causes some partnerships to terminate
for reasons other than the death of one of the partners. This opens the door to the invasion of
mutants who mimic, by playing a mixed strategy, the distribution of existing types in the population.
The only difference in the behavior of the mutants is that they use a secret handshake (not terminating
partnerships when they are expected to do so) to gain higher payoffs when playing against other
mutants. Vesely and Yang [349] explore this in more detail, constructing neutrally stable states which
are resistant to secret handshakes. This is done by avoiding voluntary dissociation (i.e., not caused by
death) in equilibrium by punishing deviations within existing partnerships. Notably, such punishment
is milder than traditional grim trigger punishments as the possibility of dissociation gives players an
outside option, removing the ‘assortativity’ of remaining with the same partner forever.

Izquierdo et al. [181] obtain cooperation in a model which is similar to Fujiwara-Greve and
Okuno-Fujiwara [132], but has a much simpler strategy space (see Sigmund [329] for discussion of
similar models). Strategies are triplets that specify (i) Cooperate or defect when first matched with a
partner; (ii) Cooperate, defect or dissociate when partner cooperated last period; (iii) Cooperate, defect
or dissociate when partner defected last period. When individuals have short expected lives, defection
dominates in stable equilibrium, but when individuals have long expected lives, the assortativity
induced by strategies in which players start off cooperating and continue to do so as long as their
partner also cooperates is enough to generate high levels of cooperation in stable equilibrium. High
levels of cooperation can still be generated by tit-for-tat strategies (cooperate but defect if partner
defects) in the model without the option to leave. However, without the option to leave, a tit-for-tat
player will have to wait for any defecting partner to die, hence the model with the option to leave
can generate even more cooperation. This advantage is one reason why in the model with the option
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to leave, players who cooperate but leave when their partner defects end up comprising a share of
the population almost twelve times that of tit-for-tat players. Izquierdo et al. [182] analyze a similar
model with a slightly reduced strategy space and give further analytic results for the dynamics and
stable states. Rivas [286], also mentioned in Section 4.2.4, considers the case when pairs of cooperating
players automatically remain together in the following period.

3.5. Network Formation

Returning briefly to the time honored topic of risk dominance versus Pareto efficiency in two
strategy coordination games (see Figure 4iii), Staudigl and Weidenholzer [336] consider a setup in
which any given player chooses both a strategy in the coordination game and a set of other players to
play the game with (see Hellmann and Staudigl [162] for a discussion of previous work along these
lines). The given player’s payoff is then given by the sum of his payoffs in the game played against
each of these players, minus a fixed cost for each of the players with whom he plays the game (a linking
cost). The number of other players with whom a player can play the game is bounded above by a
constant k. Considering a perturbed best response dynamic, starting from a state in which all players
play the strategy associated with the risk dominant equilibrium, it takes at most k players to make
errors and switch to the strategy associated with the Pareto efficient equilibrium for any other player
to benefit from switching to the strategy associated with the Pareto efficient equilibrium and choosing
to interact with the k players who already play this strategy. This amounts to changing strategy and
consciously engaging in positive assortment with those who play that strategy. In this manner, k errors
suffice to move to a state in which all players play the strategy associated with the Pareto efficient
equilibrium. For low values of k, this means that the Pareto efficient equilibrium can be stochastically
stable. The reader will see the strong similarities between these arguments and the arguments of
Wu [356] discussed in Section 3.2.2, although the papers come to the topic from differing perspectives.

Bilancini and Boncinelli [44] consider a model that differs from that of Staudigl and
Weidenholzer [336] in that there are two types of player and players of each type suffer a cost from
interacting with individuals of the other type. In choosing a best response, players know the types of
their current neighbors, but are assumed not to know the types of those who are not their neighbors
and instead only know the proportions of each type in the population that currently plays each
strategy. When the cost of heterogeneous interaction is high, stochastically stable states involve players
segregating by type. More surprisingly, one type plays one strategy and the other type plays the
other strategy. The reason that such profiles are especially stable is that, starting from such a profile,
following an error, the error making player can, with high probability, infer players’ types from the
strategies that they are currently playing and use this information to rematch and recoordinate with
those of the same type as himself.

Goyal et al. [140] consider a similar model of endogenous interaction to the above but for situations
in which two players interact if and only if they both desire this. Payoffs for each interaction are similar
to Figure 4ii, except that there is an additional payoff for coordinating with oneself; and, similarly
to the language game of Neary [257] discussed in Section 4.2.2, the preferences of some players over
(A, A) and (B, B) are reversed, so that these players obtain a payoff of 1 from (A, A) and a payoff of
1 + α from (B, B). Under a pairwise coalitional dynamic (see Section 2.2.2), conditions are given for the
stochastic stability of the state at which every player interacts with every other player and plays the
strategy corresponding to the preferred outcome of the majority of players.

Bilancini and Boncinelli [43] consider network formation in a situation akin to a multiplayer
prisoner’s dilemma, in which cooperation by a player decreases his payoff relative to defection but
creates a benefit to all of his neighbors in the network, with the maximum number of neighbors of each
player bounded above. Each period, a player chooses whether to cooperate or defect, following which,
players have the opportunity to sever any of a randomly chosen subset of their existing links then
create new links before payoffs are realized. Players sever links with defectors, so if a player chooses
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to defect he faces the cost of other players severing links with him. The process converges to either full
cooperation, full defection or a mixture of the two, depending on parameters.

Boncinelli and Pin [64] give a very simple model of the formation of networks in which players
have a maximum degree of 1 (i.e., can be matched to at most one other player). Players get a payoff
of 1 if they are matched and a payoff of 0 if they are not matched. A perturbed pairwise coalitional
best response dynamic is considered under two models of perturbations. In the link-error model,
a single perturbation, occuring with probability of order ε, suffices to create or destroy a link that
would not otherwise be created or destroyed. In the agent-error model, errors that cause one player to
lose payoff occur with probability of order ε, and errors that cause two players to lose payoff occur
with probability of order ε2. The substantive difference between the two models regards the creation
of a link that benefits neither of the two players between whom the link is formed. Such an event
occurs with probability of order ε under the link-error model and with probability of order ε2 under
the agent error model. A maximal matching is a network to which no additional edge can be added
without causing a player to have degree more than 1. A maximum matching is a maximal matching
with the largest number of edges. It is shown that under the link-error model, the set of stochastically
stable networks corresponds to the maximal matchings, whereas under the agent-error model, the set
of stochastically stable networks corresponds to the maximum matchings.

4. Evolution of Behavior

This section considers the evolution of behavior, broadly divided into the evolution of (i) traits
that can be primarily thought of as genetic; (ii) conventions, the embodiment of culture at a societal
level; and (iii) cultural values held by individuals. The general structure that tends to be followed by
these models is given in Figure 7. Some work on the evolution of behavior in economic applications
and as part of the Evolutionary Nash Program is deferred until Sections 5 and 6 respectively, and
general results for various behavioral dynamics are deferred until Section 7.

4.1. Evolution of Traits

Preferences in economics are a statistic derived from human choice behavior. However,
preferences do not tell the whole story. Alice may believe that the world will end at midnight
whereas Bob is a drug addict and doesn’t think much about the future. Both Alice’s choices and
Bob’s choices will exhibit low discount factors but for quite different reasons. This is fine as long as
preferences are descriptive, but in the evolution of preferences literature they are usually assumed to be
prescriptive. That is, they are associated with payoffs and describe a goal function. When preferences
are considered as a goal function instead of simply a reflection of revealed reality, it becomes necessary
to consider other factors that can affect the pursuit of these goals. Much of the work discussed in this
section considers attributes such as intelligence and farsightedness that can exist together with or even
lead to such a preference ordering.

A few of the models here follow the indirect evolutionary approach (Güth and Kliemt [143]). This
approach typically assumes that, given preferences that are some function of fitness, for example
Expression (9) in Section 3.1, players play a Nash equilibrium of the game given by those preferences
and have their fitness determined accordingly. Generalizing, the indirect method can be regarded as a
‘black box’ that gives an outcome given traits, with Nash equilibrium being only one possible setting
for the black box. One case in which Nash equilibrium may be an inappropriate outcome is when
collective agency is possible. However, the evolution of collaboration has been discussed in Section 2.3,
so will not be discussed here.

Finally, note that the most well developed literature on the evolution of traits is the literature on
the evolution of cooperation. This literature tends to consider how cooperation can be sustained in
prisoner’s dilemmas, usually through some form of assortativity in interaction. See the beginning of
Section 3.1 for a brief discussion and references to such work.
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Figure 7. The evolution of behavior. From a population, individuals are matched into groups to
interact (Section 3). In some cases, the entire population will constitute a single group. Groups of
matched players then play a game. How the game is played within a group may depend on the traits
of individuals within the group, which may be genetic (Section 4.1) or cultural (Section 4.3). How the
game is played may also depend on cultural conventions based on how the game has been played in
the past (Section 4.2). Strategies are reproduced through intergenerational transmission or through
individuals following some rule of strategic adjustment such as imitation or best response.

4.1.1. Self-Confirming Beliefs

Gamba [135] takes an indirect evolutionary approach to studying altruism in the centipede game,
but considers self-confirming equilibria (Fudenberg and Levine [131]) instead of Nash equilibria.
There are two types of player, selfish types and altruists. It is assumed that at every decision node,
altruistic types take the opposite action to that specified by the subgame perfect equilibrium (SPE)
of the centipede game. Selfish types assume that all players will always take the SPE action at every
subsequent decision node, so they themselves always take the SPE action. Their beliefs are never
disconfirmed, so we have a self confirming equilibrium. Altruists obtain lower payoffs than selfish
types with whom they are matched, but they obtain very high payoffs when they are matched to other
altruists. Hence, if there are enough altruists in the population, their population share grows under
replicator dynamics and a monomorphic population of altruists is stable.

4.1.2. Level k Thinking

Kim and Hwang [195] also consider selfishness and altruism, but in a model of level k players
(Stahl and Wilson [335]) playing a game with negative externalities and strategic substitutes. Level 0
types play a fixed strategy. Level 1 selfish types best respond to level 0 types, selfish level 2 types best
respond to selfish level 1 types, and so on. Selfish level ∞ types play the Nash equilibrium strategy.
Altruistic level k + 1 types altruistically best respond, that is best respond according to an altruistic
payoff function, to selfish level k types. Altruistic level ∞ types altruistically best respond to selfish
level ∞ types. It is shown that, if we restrict the type space to level 0 types together with selfish and
altruistic level k types for some k, then, under some conditions, a population of the selfish level k type
is not evolutionarily stable, but a population of the altruistic level k type is evolutionarily stable.
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Mohlin [239] considers two player, symmetric, normal form games and level k players. In this
model, level 0 players uniformly randomize over the strategy space. A type-acyclic game is defined
as a game such that for large enough k, level k + 1 players play the same strategy as level k players,
and consequently said strategy must be a Nash equilibrium. It is shown that if the highest k in the
type space plays this Nash equilibrium strategy, then the set of states at which all types present in the
population play this strategy is asymptotically stable. For example, a two strategy coordination game
is type acyclic, as all players of level k, k ≥ 1 choose the same Nash equilibrium strategy, so the set
of states in which every player has k ≥ 1 is asymptotically stable. Conversely, in type-cyclic games,
games in which a cycle of best responses emerges as k increases, under some regularity conditions
there exists a unique asymptotically stable set. Furthermore, if the highest k in the population is large
enough, then states in this set will always include some players who do not play identically to the
highest type player.

4.1.3. Foresight

Heller [160] considers a model of a finitely repeated prisoner’s dilemma, with sum of payoffs
maximized at (C, C) (i.e., γ < 1 + β in Figure 3), in which players have limited foresight in that they
do not know which will be the final period of the game. Specifically, foresight is costly and any given
player has a level of foresight as part of his strategy. Type L1 only knows that the game is about to
end when he reaches the final period. Type Lk knows k periods ahead that the game will end. There is
some probability that players observe the type of their opponent. This affects play. For example, an L3

type who knows that he is playing against an L1 type will know when the game is due to end two
periods before his opponent does. He knows that his opponent, on realizing that it is the final period,
will defect and that he will do likewise. Foreseeing this, he defects in the second last period as well.
Similarly, if an L3 type knows that he is playing against an L2 type, he will defect in each of the final
three periods. It is shown that combinations of L1 and L3 types that play tit-for-tat have good stability
properties. In a population containing both of these types, L3 types defect a period earlier and thus
do better than L1 types when playing against L1 types, but L1 types will sustain mutual cooperation
against L3 types for longer than L3 types sustain cooperation against L3 types.

4.1.4. Competing Cognition

Robalino and Robson [287] consider a finite extensive form game tree that is played repeatedly,
with payoffs at each terminal node drawn randomly from a finite set of possible payoff vectors, to
which new payoff vectors are occasionally added. There are two types of player, naive players, who
cannot use information about other players’ payoffs in making their decisions, and theory of preferences
players, who can learn information about other players’ payoffs and incorporate this information into
their decision making. It is shown that theory of preferences players who optimize their payoffs come
to dominate the population.

Heller and Mohlin [155] consider the evolution of preferences and cognition in an environment
of symmetric two player normal form games. The cognition of a player is a natural number, with
larger numbers representing higher levels of cognition. When two players, say Alice and Bob, with
different cognitive levels play one another, if Alice has the higher level, then she may, with some
probability, deceive Bob and choose Bob’s beliefs about her actions. It is shown that in a stable state,
types matched with the same type must choose an efficient (with respect to fitness) strategy profile, as
otherwise there is the possibility of invasion by mutants who obtain higher payoffs in such interactions.
Furthermore, if multiple types are present at a stable state, then any two types must play efficiently
against one another, otherwise homogeneous (same type) interactions would give higher fitness than
heterogeneous interactions and the state would not be stable against a small increase in the share of
either one of the types.

It is worth remarking that the secret handshake (Robson [288]) style arguments leading to
efficiency amongst the same type in the model discussed above are a version of the assortativity
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arguments discussed in Sections 3.1 and 3.2.1. The difference is that rather than a player having
assortativity in interaction and interacting mainly with similar types, the player exhibits assortativity
in behavior and behaves in one way when playing against one type and in another way when
playing against another type. In fact, if we regard no interaction as a form of behavior, we can regard
assortativity in interaction as a special case of assortativity in behavior.

4.1.5. Biases: Overconfidence and Endowment Effects

Heller [157] gives a simple theory of the evolution of overconfidence. Each generation, each
individual in a population chooses between a status quo technology and an individual-specific
technology. Each individual observes a public signal of the likelihood that they succeed when they
use the status quo technology and a private signal of the likelihood that they succeed when they
use their own technology. The success probabilities of individuals using the status quo technology
are correlated. Individuals of different types may be over or underconfident regarding their own
technologies, interpreting their signal as indicating an inaccurately high or low probability of success.
Consequently, overconfident types will be more likely than a rational payoff maximizer to choose
their own technology. The expected fitness of rational payoff maximizers will be higher than that
of overconfident agents, but due to the correlation in success when using the status quo technology,
average fitness of rational types will have a higher variance. Some level of overconfidence will thus
lead overconfident types to have a higher expected logarithm of average fitness, which is the quantity
that matters for long run population growth (Lewontin and Cohen [218], Robson [289]).

Frenkel et al. [126] consider barter trade and allow individuals to exhibit two biases, cursedness
whereby a trader does not sufficiently adjust his beliefs about the quality of a trading partner’s good
in response to the partner’s willingness to trade, and the endowment effect whereby a trader overvalues
a good in his possession. These two biases can counteract one another so that in barter situations an
individual with both biases can behave identically to, that is exhibit the same phenotype as, a rational
decision maker. If, aside from barter situations, with small probability p other situations may be faced
in which the biases cause their holders to lose payoff, then rational types can invade the population
under the replicator dynamics. However, if we consider dynamics with imperfect replication (e.g.,
sexual reproduction) and two loci of selection (one for cursedness and one for the endowment effect),
then offspring of rational types (e.g., from mating with a biased type) may be more likely to exhibit
only one of the biases and thus achieve low fitness in barter situations. It transpires that populations
of individuals that exhibit a rational phenotype in barter situations can only be invaded by type
combinations that are close to them, so evolution can take a long time to eradicate the biases from the
population. These results explicitly depend on p being low, so that biases do not harm payoffs greatly,
and implicitly depend on assortativity amongst types being low, so that invading rational types do not
mate too frequently with other rational types and produce rational offspring.

Open Topic 4. The concept of Nash equilibrium depends on individual incentives yet requires social
coordination. Evolutionary dynamics can sometimes justify this social coordination, but this is not always the
case. Consequently, even assuming individualistic decision making, Nash equilibrium is not an obvious starting
point for social analysis (e.g., for use in the indirect evolutionary method). Maximin strategies, strategies which
maximize the lowest possible payoff that a player could obtain by playing them, are not socially determined and
so may be a better starting point (see, e.g., Rusch [297]).

Open Topic 5. Work on the evolution of traits is vulnerable to the criticism that it is merely telling ‘just so
stories’ (Kipling [197]), inventing unverifiable creation myths that are not tested against alternative hypotheses.
Studies often make no attempt to discuss testable implications that could potentially falsify their theories. Ideas
could be borrowed from the evolutionary psychology literature, which has taken steps in this direction.
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4.2. Conventions—Culture Embodied in Society

An example of culture embodied at a collective level is a system of justice. Even if Alice and Bob
fail to tell their son Colm about trial by jury, Colm will still have the right to a trial by jury should he be
accused of a serious crime. The right to a trial by jury is a social fact (Searle [317]) in that its continued
existence as an institution relies upon the beliefs of those within a society, but it is a social fact that is
robust to the ignorance of some members of society. Moreover, it is a convention (Lewis [217]) in that it
exists as a social fact today because it has existed as a social fact in the past.

Conventions are a powerful tool for explaining stable behavior. Moreover, the properties of and
relations between conventions can help to explain which conventions may be most stable in the long
run. Examples of the effects discussed in this section are easily found in everyday life as well as in
economic data, such as the survey data on conventional crop sharing contracts in Illinois considered in
Young and Burke [360].

4.2.1. Perturbed Dynamics and Stochastic Stability

The approach of Lewis [217] to conventions was mathematically modeled by Young [361] using
the methods of Foster and Young [121] and Freidlin and Wentzell [125]. Players update their strategies
according to some adaptive dynamic, but occasionally make errors in strategy choice. The adaptive
dynamic will often move society to a convention, but the errors generate the possibility of occasional
transitions from one convention to another.

Consider a given family of perturbed adaptive dynamics (Markov processes) indexed by a
parameter ε ≥ 0 that measures the size of the perturbations. A convention is a state which is a rest
point of the dynamic when ε = 0. When ε > 0, transitions of a society from one convention to another
can be studied. The exponential decay rate of a transition probability as ε→ 0 is typically referred to
as the cost or resistance of the transition. The invariant measures of the processes, µε, give the share of
time, µε(x), that a dynamic spends at any given state x in the long run. Conventions x∗ that have a
non-vanishing probability of being visited as error probabilities approach zero, that is µε(x∗) 6→ 0 as
ε→ 0, are referred to as stochastically stable (Foster and Young [121]).

The total cost of a path of consecutive transitions is the sum of the costs of the transitions on that
path. Consider a weighted, directed graph on the set of conventions that, for any conventions x and y,
includes an edge from x to y, the weight of which is the lowest total cost of any path of transitions
from convention x to convention y. A spanning tree is a subgraph of this graph that contains no cycles
and such that one convention, the root, has outdegree equal to zero, and every other convention has
outdegree equal to one. Of all the possible spanning trees rooted at a convention x, consider one
that minimizes the sum of edge weights. The stochastic potential of x equals this minimum value.
Stochastically stable conventions can be shown to correspond to the conventions with the lowest
stochastic potential (see, e.g., Kandori et al. [191], Young [361]).

A typical perturbed adaptive dynamic involves strategy choice by players whose choice rule is
composed of an unperturbed dynamic (e.g., best response) together with the possibility of errors (e.g.,
playing a non-best response).

Uniform errors are such that the cost of every error is the same, typically set equal to 1 with the
probability of each error of order ε. Other errors are payoff-dependent and typically have a cost that
increases in the payoff loss from making the error. For example, logit errors have a cost equal to the
difference between the expected payoff of playing a best response and the expected payoff of playing
the error in question. When choice is between two strategies, Probit errors have a cost equal to the
square of this difference (see Sandholm [306]). Probit choice between three or more strategies is more
complicated. For example, with three strategies, the cost of choosing the third best strategy can depend
quadratically on the payoffs of all three strategies (Dokumaci and Sandholm [104]).

If there is some ordering on the strategies such that any given player only makes errors that
correspond to strategies higher in the ordering than his best response strategy, then we say that errors
are intentional (Naidu et al. [244]). For example, if there exist conventions corresponding to strategies
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Figure 8. Length, steepness and cost of transitions between conventions. The state space is the set
of integers from 0 to 11. The only transitions that occur with positive probability are between adjacent
states. The cost of a transition, the exponential decay rate of its probability, equals the change in height
on the vertical axis if this quantity is positive. Otherwise, the cost is zero. For example, the cost of
9→ 10 is two and the cost of 10→ 9 is zero. The length of the path from x to y is one, as only a single
transition on the path, 2→ 3, has strictly positive cost and is therefore an error. However, this transition
is relatively steep, with a cost of three. In contrast, the path from y to z has length two as both 6→ 7
and 7→ 8 are errors, but is less steep as each error only has a cost of one, thus the total cost of the path
is two. States x and y minimize stochastic potential and are thus stochastically stable.

{sj}1≤j≤n and Alice attains higher payoffs at conventions corresponding to higher values of j, then
when her best response is sk, it may be that the only strategies that she will play in error are sj, j > k.
Experimental evidence on errors is presented in Section 9.4.

The total cost of a path of transitions can be considered as a combination of two factors, (i) the
length of the path—the number of errors on the path, and (ii) the steepness of the path—how unlikely
the errors on the path are to occur. These ideas are illustrated in Figure 8. In some models, selection
by stochastic stability arises from differences between the lengths of paths from one convention to
another, whereas in other models it arises from differences in the steepness of such paths. We shall
refer to such selection as length-based and steepness-based respectively.

4.2.2. Coordination Games

In two strategy, two player coordination games, length-based selection (see Section 4.2.1) works
towards risk dominance, as, by definition, it is a best response to play a risk dominant strategy against
a population of possible opponents that is divided equally between two possible strategies. Uniform
errors do not give steepness-based selection as all errors that occur with positive probability are equally
likely. Errors that decrease according to payoff loss relative to best response (such as logit or the class
of weakly payoff-dependent mistakes of Klaus and Newton [199]) also work towards risk dominance
via steepness-based selection.

Staudigl [337] considers asymmetric two strategy coordination games in a two population
environment. For large population sizes, it is shown that the cost of transitions between conventions
can be estimated by the solution to a continuous optimal control problem. This methodology is used
to show that, if the two populations are the same size, then under uniform errors or logit choice, the
convention corresponding to the risk dominant Nash equilibrium is uniquely stochastically stable.
The same can be said for probit choice under a (non-generic) condition on the payoffs of the game.
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A B
A γi, γj 0, 0
B 0, 0 1− γi, 1− γj

Figure 9. Two player coordination game with heterogeneous preferences. Let γi, γj ∈ (0, 1). For
each combination of A and B, entries give payoffs for the row player and column player respectively.
Note that if γi < 1/2 < γj or vice versa, this game is a Battle of the Sexes.

Neary [257] discusses the language game, in which players in a finite population play a two strategy,
two player coordination game against each of the other players (i.e., interaction is uniform). One
type of player prefers one of the coordination outcomes and another type prefers the other (see also
Goyal et al. [140], discussed in Section 3.5). There are three possible conventions, a homogeneous
convention corresponding to each strategy and, if the minority type’s preferences are sufficiently
strong, a heterogeneous convention in which each type plays their preferred strategy. The effect of a
range of parameters on stochastic stability is studied.

Naidu et al. [245] consider a similar two population model in which asymmetry is interpreted
as due to one of the strategies corresponding to egalitarian language and the other corresponding
to inegalitarian language (e.g., ‘tu’ vs. ‘vous’ in French). One of the populations has high status and
does better than the other, low status, population under the inegalitarian language. They show that
under uniform intentional errors (see Section 4.2.1 for definition and Sections 6.4 and 9.4 for further
discussion), the inegalitarian convention may be stochastically stable if the low status population is
large enough relative to the high status population. Belloc and Bowles [36] uses a similar model to
explain the persistence of inferior cultural conventions, building on previous work that considers the
role of conventions in sustaining poverty traps and inequality (Bowles [69,71]).

Neary and Newton [256] also consider two strategy, two player coordination games, and allow
players on an arbitrary interaction network to have individual specific payoffs for each coordination
outcome. When player i and j interact their payoffs are given by the game in Figure 9. The concept of
autonomy governed by a potential function (Young [368], see Sections 2.4 and 8.1.3) is used to make
statements about long run behavior. In particular, a class of networks, corpulent graphs, is identified
such that, for large enough networks in this class, random diversity in ordinal preferences will nearly
always lead to heterogeneity in behavior at stochastically stable states, regardless of the cardinal
strength of the preferences.

Sawa and Wu [310] analyze a dynamic in which players in a population make choices according
to reference dependent utility, with losses relative to the reference point weighted more heavily than
gains (Kahneman and Tversky [187]). When the dynamic is perturbed by uniform errors, it is shown
that, for essentially any model of endogenously determined reference points, if a symmetric two
strategy, two player coordination game has a super dominant strategy, defined as a strategy that is both
maximin and payoff dominant (hence also risk dominant), then the state at which every player plays
this strategy is uniquely stochastically stable. This is because, when we consider the payoffs of a two
by two matrix under the reference dependent payoff transformation, a payoff dominant and maximin
strategy is risk dominant after the transformation for any given reference point. That is, as long as
half the population plays this strategy, it will be a best response to play this strategy, no matter which
reference point is used. Sawa and Wu [309] consider a similar model, with similar intuition, that uses a
weaker condition than super dominance, loss dominance (maximin and risk dominant), proving their
result for a smaller class of preferences.

Bilancini and Boncinelli [45] compare stochastically stable conventions in two strategy, two player
coordination games for (i) uniform errors; (ii) payoff-dependent errors (like logit and probit), in which
the cost of an error is an increasing function f (·) of the loss in expected payoff to the player making
the error; and (iii) condition-dependent errors, in which the cost of an error is an increasing function g(·)
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A B
A a d
B c b

Figure 10. Two player coordination game with payoff restrictions. For each combination of A and B,
entries give payoffs for the row player. Let a > b > c > d and a− c > b− d so that (A, A) is the risk
dominant and payoff dominant Nash equilibrium, but B is the maximin strategy. This corresponds to
setting β > α > 0 in our general coordination game in Figure 4[i].

of the last realized payoff of the player making the error. The effects of condition-dependent errors
on steepness-based selection vary. Initial errors are hardest from payoff dominant conventions, but
subsequent errors will also depend on payoffs off the main diagonal, with a higher probability of errors
by players who are not playing the maximin strategy. Now, consider a model of random matching
with varying probabilities of match termination. When players rematch infrequently, it is always a best
response to coordinate with one’s current partner, so rematching can lead to the spread, without the aid
of errors, of any action that is present in the population. Consequently, transitions from one convention
to another only require a single error. In such cases, selection is then steepness-based. For the
coordination game in Figure 10, this is illustrated in Figure 11. At the opposite extreme, in the standard
model of rematching every period, as discussed earlier in this section, length and steepness-based
selection favour risk dominance under uniform and payoff-dependent errors. For condition-dependent
errors, length and steepness can work in opposing directions. Figure 12 illustrates these effects.

There also exist results on stochastic stability in coordination games with an arbitrary number of
strategies. Stochastically stable conventions of Nash demand games are related to subsets of the core of
cooperative games and are discussed in Section 6.1. Stochastically stable conventions of coordination
games with zero payoff for miscoordination are related to bargaining solutions and are discussed
in Section 6.4.

4.2.3. Communication and Language

There has been considerable prior work on the evolution of language and efficient communication.
Examples include Blume and Arnold [53], Blume et al. [56,57,58], Blume [61], Hurkens and Schlag [175],
Kim and Sobel [196], Schlag [314,315], Sobel [332]. More recently, Heller [158] considers coordination
games with a unique efficient strategy profile and a round of cheap talk before the game is played.
In such settings, Demichelis and Weibull [100] showed that when there exist messages with preexisting
literal meaning corresponding to elements of the strategy set and also lexicographic lying costs (so that
if the expected payoff from a truthful message and a false message are equal, a player prefers to
tell the truth than to lie), then the unique stable outcome is for the efficient strategy profile to be
played. Heller [158] shows that the interpretation of this as relating to ‘small’ lying costs is problematic.
Specifically, continuous lying costs are considered and it is shown that if these costs are small enough
then inefficient equilibria perist. The method is to show that the game without lying costs has an
inefficient symmetric equilibrium σ∗ that assigns positive probability to every pure strategy that is a
best response to itself, therefore nearby games (with small lying costs) have a nearby Nash equilibrium
with the same support. As every message is used in equilibrium and the equilibrium is constructed so
that lower payoffs are achieved when the same message is sent by both players, any invading mutant
types attain low payoffs when playing one another, so σ∗ is evolutionarily stable.

4.2.4. Best Shot and Minimum Effort Games

Boncinelli and Pin [63] consider stochastic stability in best shot network games. Players interact
on a network and each can contribute or not contribute. For a given player, if none of his neighbors
contribute, then his best response is to contribute. Otherwise, his best response is to not contribute.
The game is effectively a model of threshold public good provision with a threshold of one. It is shown
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Figure 11. Stochastic potential under perturbed best response for coordination games under
infrequent rematching. The game in Figure 10 is played by a population of size n = 8. As rematching
is infrequent, any updating individual chooses the same action as his current partner, so a path escaping
the basin of attraction of any convention only requires a single error. In Panel (i), as all errors have
equal steepness, this results in both conventions being stochastically stable. In Panel (ii), payoff losses
b− d and a− c are compared, resulting in the risk dominant convention being stochastically stable.
In Panel (iii), current conventional payoffs b and a are compared, resulting in the payoff dominant
convention being stochastically stable.

that, if the only type of errors in the model are errors which switch players from not contributing
to contributing (each occurring with probability of order ε), then the stochastically stable states are
the Nash equilibria of the static model. This is because there always exists a transition path from
any Nash equilibrium to any other Nash equilibrium that, for each transition between consecutive
Nash equilibria on the path, only involves a single error. In the words of Samuelson [300], the set of
Nash equilibria is a mutation-connected component. If, instead, the only type of errors in the model are
errors which switch players from contributing to not contributing, then the stochastically stable states
are the Nash equilibria of the static model with the maximum number of contributors. If errors in
both directions are permitted at the same rate, then the results of the first case apply. Note that the
directional restrictions on possible errors make them similar to uniform intentional errors as defined
in Section 4.2.1, with further theoretical results described in Section 6.4 and empirics in Section 9.4.

A minimum effort game is at the opposite end of the public goods spectrum from a best shot game.
Whereas in the best shot game only a single person must contribute for a good to be provided, in
the minimum effort game everyone must contribute. Specifically, players each make some level of
costly effort and the payoff to a player is the minimum level of effort taken by any of the players with
whom he interacts, minus the cost of his own effort. There have been a few papers in recent years
(Alós-Ferrer and Weidenholzer [15], Angus and Masson [21], Cui and Wang [93], Khan [193]) that
consider dynamic processes and minimum effort games when the set of players with whom a player
interacts is not the same as the set of players he observes when he chooses his strategy. Specifically,
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Figure 12. Stochastic potential under perturbed best response for coordination games under
rematching every period. The game in Figure 10 is played by a population of size n = 8. Updating
players maximize their expected payoff over all possible opponents and the threshold between basins
of attraction is approximated by n b−d

a−c+b−d as population size n becomes large. In Panel (i), as all errors
have equal steepness, the convention with the longer basin of attraction, the risk dominant convention,
is stochastically stable. In Panel (ii), the path exiting the risk dominant convention is not only longer,
but also steeper, so it remains stochastically stable. In Panel (iii), for large enough populations, we can
ignore the g(a) and g(b) terms, so that stochastic stability is determined by comparing g(c) b−d

a−c+b−d
and g(d) a−c

a−c+b−d . In this example, the difference in steepnesses g(c) and g(d) is large enough that
steepness dominates length and the maximin convention is stochastically stable.

a player may imitate the strategy of successful players with whom he does not interact. Thus, small
sets of interacting players who play high effort levels can ‘reproduce’ themselves (i.e., their strategies)
by being observed to obtain high payoffs. Similar effects can be obtained in other games, such as
prisoner’s dilemmas (Rivas [286]). This is effectively a story of assortativity (see Section 3) and group
selection. Individual strategies that are played in successful groups are imitated. In terms of group
selection, groups of players who obtain high average payoffs (e.g., a group of cooperators who interact
mainly with each other) expand via selection at a group level, even though they may be outperformed
in interactions with those outside the group (e.g., against defectors).

4.2.5. Cournot Oligopoly

Vega-Redondo [348] showed that in a Cournot oligopoly game, if players imitate (with uniform
errors) the strategy of the player who is achieving the highest current payoff, then production of the
Walrasian equilibrium quantities, and not the Nash equilibrium quantities, is uniquely stochastically
stable. This is due to spite effects, as starting from Nash equilibrium quantities, if firm i makes a
single error and increases its quantity, this reduces the profits of firm i but reduces the profits of the
other firms even more. Hence firm i, being relatively more successful, will be imitated the following
period. Alós-Ferrer [19] considers an amendment to the model whereby firms instead imitate the
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strategy that achieved the highest payoff in the previous m periods. That is, firms play the game with
players in the present, but may imitate players in the past. In this model there can be a multiplicity of
stochastically stable quantities in between the Nash equilibrium and Walrasian quantities. The reason
for this multiplicity is that memory is assortative in the sense that strategies at period t generated
the payoffs they generated due to other strategies at period t. If every player has played the Nash
equilibrium quantity for as long as they can remember, and a player makes an error and plays a higher
quantity, this will reduce the payoffs associated with the Nash equilibrium quantity in that period, but
will not affect the payoffs associated with the Nash equilibrium quantity in previous periods (a similar
assortativity across time is generated in a best response setting by a variant of fictitious play in Marden
et al. [226], discussed in Section 8.4). This makes quantities lower than the Walrasian quantity more
robust in the presence of memory. Alós-Ferrer and Shi [14] show that this effect disappears if at least
one player has no memory of any strategy profile other than the current one. Such a player is immune
to the lure of the payoffs of the past.

4.2.6. Prisoner’s Dilemmas

Weibull and Salomonsson [352] consider symmetric, two player games. Individuals’ fitnesses
are given by a function of both their own payoff in the game and their opponent’s payoff. This
sometimes leads to evolutionary stability of behavior that is not a Nash equilbrium of the game.
In particular, consider an extensive form game in which players’ play a prisoner’s dilemma, following
which, a player who has cooperated and his opponent defected, has the opportunity to pay a cost
to punish his opponent. There is a set of rest points at which all individuals are cooperators and a
sufficient number punish defection. The size and stability of this set is considered under a variety of
different fitness functions, under which an individual’s fitness can increase or decrease in the payoff
of his opponent. A similar extensive form model with rewards and punishments, in which fitness is
considered in equilibrium and there is no explicit transformation of payoffs into fitnesses, is considered
by Herold [165], discussed in Section 2.4.

Heller and Mohlin [156] consider randomly matched pairs of players who play a prisoner’s
dilemma with sum of payoffs maximized at (C, C) (i.e., γ < 1 + β in Figure 3) against one another.
Each player in a matched pair observes a random sample of past play by their opponent against
other opponents. Strategies map these observations to distributions over actions. Perturbations of the
environment are considered in which some small fraction ε of the population comprises commitment
types, where each commitment type always plays a given strategy and at least one commitment type
plays a totally mixed strategy. A steady state of the unperturbed environment is said to be strictly
perfect evolutionarily stable if is a limit of evolutionarily stable states of the perturbed environment
as ε → 0. It is shown that if π(D, C) − π(C, C) > π(D, D) − π(C, D), corresponding to γ > 1 in
Figure 3, then the only strictly perfect evolutionarily stable state is for players to always defect, as by
the assumed inequality, defecting can only discourage other players from defecting against you.
However, if the opposite inequality holds, then full cooperation can be sustained as a strictly perfect
evolutionarily stable state, as equilibrium strategies can then be such that defection increases the
probability that future partners will defect against you. There is an essentially unique way in which
such cooperation can be maintained, with some members of the population defecting if they observe
their opponent defecting at least once, and the remainder of the population defecting if they observe
their opponent defecting at least twice.

In a public goods game with prisoner’s dilemma style payoffs, Traulsen et al. [343] consider four
possible player types. These are the standard cooperator and defector types, as well as loners, who do
not participate in the game and receive a fixed payoff, and punishers, who cooperate and inflict costly
punishment on defectors (see also Section 2.4). When error (mutation) rates are high, a positive share of
each type persists in the population. In particular, a positive share of punishers persists, despite being
outperformed by cooperators, who do not punish defectors and so do not suffer the associated fitness
cost. Due to the positive share of punishers, defectors are punished and do not outperform cooperators.
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When error rates are low, the process spends most of the time at homogeneous states. Loners invade
and outperform populations of defectors, cooperators or punishers invade and outperform populations
of loners, and defectors invade and outperform populations of cooperators. In contrast, punishers can
only be invaded by cooperators by neutral drift, so for large populations, populations of punishers are
most likely to be observed in the long run.

4.3. Culture Embodied in Individuals

An example of culture embodied at an individual level is the ability to cook Yorkshire pudding.
Alice and Bob can teach this skill to their son Colm. Yorkshire pudding will then persist as a cultural
phenomenon as long as enough individuals know how to make it.

Montgomery [241] considers the model of intergenerational cultural transmission of Bisin and
Verdier [52]. Individuals (within a continuum population) have a cultural type (from a finite set of
types) that they have some probability of passing directly to their offspring via direct socialization.
If that fails, then the offspring adopts a trait at random from the population. Individuals of type i
choose the level of direct socialization for their offspring, trading off a quadratic cost against a desire
to maximize a weighted probability over values Vij, where Vij represents the value that an individual
of type i places on having an offspring of type j. The cultural distaste of an individual i for trait j is
given by ∆ij := Vii −Vij. Montgomery [241] shows that this model simplifies to a replicator dynamic
on a game where ∆ij is the payoff from playing strategy i against strategy j. When the number of types
in a population is more than two, it is possible that the most tolerant types (low cultural distate) can
go extinct. For even higher values of n, multiple equilibria and limit cycles are observed.

Cheung and Wu [85] consider the above model adapted for a continuous set of types T = [0, 1],
assuming that Vij and hence ∆ij are continuous in i and j (which implies that the assumption that
T is one dimensional is meaningful). It is shown that monomorphic states are not Lyapunov stable.
Furthermore, if ∆ij is a strictly increasing function h of |i− j|, more can be said. If h is convex, then the
unique Nash equilibrium (which is Lyapunov stable) is composed of the two extreme types 0 and 1.
In fact, all rest points of the dynamic are composed of two types with equal shares of the population,
but unless these types are the extreme types, these rest points are not stable. If h is strictly concave,
then the above-mentioned state with the two extreme types is no longer a Nash equilibrium, although
it remains a rest point. Some rest points under concave h have more than two types present.

4.4. Interaction of Culture Embodied in Individuals and Society

The desire of Yorkshiremen to teach their offspring about Yorkshire pudding is a convention.
We can easily imagine an alternative Yorkshire in which Lancashire hotpot is a local cuisine. This
shows that sometimes individual behaviors will be socially enforced and a cultural phenomenon
embodied partly at a collective and partly at an individual level.

A model that combines culture embodied at the individual level (religiosity versus secularism)
and culture embodied at a societal level (equilibrium levels of wearing the Islamic veil) is that of
Carvalho [79]. There are two types, religious and secular types, in a continuum population. Individuals
have the option to veil themselves to some degree (between 0 and 1). Veiling is a commitment device
to avoid temptation. Secular types would like to give in to temptation, but religious types would like
to resist temptation. Individuals care not only about their own behavior, but also about how others
view their behavior. In equilibrium, religious types veil more than secular types. Individuals can also
choose to spend on religious education to increase the probability that their offspring will be religious.
Religious types may wish to do this, so that their offspring will adopt a higher degree of veiling and be
less likely to be tempted. Regulations that mandate (typically at 0 or 1) some degree of veiling thus
lead to a reduction in religiosity, as the transmission mechanism from religiosity to behavior via veiling
is removed. However, the degree of veiling that is mandated will still determine how often people
give in to temptation. Moreover, it is shown that if there is an option for types to segregate themselves
and avoid temptation, then banning veiling can lead to a higher degree of religiosity, as individuals
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seek to increase the probability that their offspring will be religious, in order that they will segregate
and avoid temptation. Note that voluntary segregation is a method of endogenously determining
assortativity along the lines discussed in Section 3.2.

5. Economic Applications

5.1. Macroeconomics, Market Selection and Finance

Chakrabarti and Lahkar [82] give a model in which firms choose input levels and production
depends on aggregate input, with each firm’s share of production equal to their share of total input.
Each firm’s payoff is given by its production minus a strictly convex input cost. The aggregate
production function is concave, so input by any given firm exerts a negative externality on other firms
by reducing the average return on input. This model has a potential function, hence play converges
to an equilibrium under the (continuous population) logit dynamic (Hofbauer and Sandholm [167]).
Due to the negative externalities in the model, equilibrium production is inefficiently high. As a
consequence of this, it may occur that while the process is converging to the (unique, in this model)
equilibrium, aggregate payoffs of the firms may rise before falling back down. This can occur due to
states that are passed through en route to the equilibrium being closer to efficient production levels
than the equilibrium is. The production function itself has a technology parameter and it is shown that
when this parameter is changed, thus changing the equilibrium, boom-bust patterns of the type just
discussed can be generated.

Norman [271] analyzes a variant of the model of Blume and Easley [55] (with a correction later
provided by Massari [231]), in which there are many possible paths of the economy (sequences of states
of nature); there is a true probability measure over these paths; and consumers have differing beliefs
over these paths. The model is one of general equilibrium. Norman [271] assumes that the probability
measure over the true state of nature in period t + 1 is determined by the consumption shares of the
consumers in period t. The beliefs of consumers are bound by the same restriction. It is shown that a
perfect-foresight equilibrium, in which there exists a consumer with rational expectations who accounts
for all of the consumption in the economy, need not be neutrally or Lyapunov stable, as a change in
consumption shares can lead to a change in the state probabilities. However, if the process is ergodic,
then there exists an invariant probability measure over states in the distant future, over which belief
selection can occur. These results are used to explore the stability of inflation paths (constant versus
increasing or decreasing inflation) and liquidity traps in macroeconomic examples. For further work
on market selection of beliefs, see Massari [232,233], Sandroni [307,308], and for the related literature
on the market selection of rules of portfolio choice see Alós-Ferrer and Ania [9], Amir et al. [20], Blume
and Easley [54], De Giorgi [98], Evstigneev et al. [114,115], Hens and Schenk-Hoppé [163].

Foster and Young [123] study a process of learning to approximate Nash equilibria in repeated
games by hypothesis testing. Norman [270] extends this to a model of learning rational expectations
equilibria in a macro-style environment. Agents hold models of the world, given by sets of parameters,
and given his model of the world, an agent will play a smoothed response that is close to a best
response. Given play (data), every so often an agent will submit his model to a hypothesis test.
If his hypothesis test rejects the model, he will randomly adopt another model and henceforth play
accordingly. If agents’ responses are close to best responses, the hypothesis tests are sensitive enough,
and enough data is used for the hypothesis tests, then, in the long run, the process spends most of
the time close to a rational expectations equilibrium in that agents’ predictions are close to the actual
outcomes and agents’ responses are close to optimal.

Cho and Kasa [88] analyze a similar model to Norman [270], but focus on selection amongst
multiple models (corresponding to equilibria) using stochastic stability, although they do not explicitly
mention stochastic stability except for a reference to Kandori et al. [191]. They find the costs of
transitions that escape the basins of attraction of equilibria. These escapes correspond to model
rejection events after which any alternative model may be chosen with positive probability. Hence,
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a model which has the uniquely highest cost of escape will be uniquely stochastically stable. Freidlin
and Wentzell [125] tree arguments are not required.

5.2. Industrial Organization

Since the 1990s there has been a steady flow of evolutionary work related to pricing and
competition. Examples include Alós-Ferrer and Ania [9], Alós-Ferrer et al. [16,17], Tanaka [339],
Vega-Redondo [348]. Some recent work has studied the selection of market institutions (Alós-Ferrer
and Kirchsteiger [12], Alós-Ferrer et al. [18]) and for a flavor of this see the discussion in Section 3.2.3.
Recent work has also considered the impact that adaptive multi-agency decision making within
organizations can have on corporate culture (Newton et al. [263]). This relates to the relationship
between collective agency and coordination problems and has been discussed in Section 2.2.1.

Lahkar [210] analyzes the stability of equlibria in the Burdett and Judd [75] model of price
dispersion and shows the emergence of price cycles. There are populations of buyers and sellers, each
of which can be represented by the unit interval. Strategies of sellers are prices in the interval [0, 1].
The set of possible prices is discretized by Lahkar [210] to simplify analysis. A strategy for a consumer
is a number of sellers to sample. Consumers sample sellers independently and each consumer chooses
to buy from the seller in her sample that offers the lowest price. Some Nash equilibria of the model
involve sellers charging multiple prices. Building on the analysis of Hopkins and Seymour [172], who
show instability of equilibria in multiple prices under the replicator and similar dynamics, it is shown
using simulation that, under logit dynamics, rest points that approximate multi-price Nash equilibria
of the original model are unstable, and that play converges to limit cycles. This is shown analytically
for the special case in which buyers can only sample one or two sellers.

In a similar model, Chakrabarti and Lahkar [83] let sellers choose a level of technology instead of a
price, with buyers sampling multiple sellers and choosing the one which offers the highest technology.
Buyers produce an output equal to the technology level that they sample. Results are very similar to
those of Lahkar [210], but can instead be interpreted to show the emergence of cycles in productivity.

Dawid and Hellmann [96] consider a setup in which firms choose which other firms to form R&D
partnerships with, and payoffs are then given by the Nash equilibrium of a Cournot game. Each R&D
partnership in which a firm is involved costs a fixed amount f and reduces the firm’s marginal cost
of production by a fixed amount. Note that firms care not only about how many partnerships they
are involved in, but also in how many partnerships their partners are involved in, as their profits
are affected by their partners’ marginal costs. The network of partnerships is updated according to
the perturbed pairwise better response dynamic of Jackson and Watts [184], which is effectively the
dynamic of Roth and Vande Vate [293] augmented with random errors in the style of Young [361]
(see Section 2.2.2). The stochastically stable states of this process are shown to have one completely
connected component of the network in which every firm is connected to every other firm, with the
remainder of firms being isolated and not involved in any partnerships. The size of the connected
component decreases monotonically in the cost of a partnership f . A comparative static analysis shows
that total profits in the industry are nonmonotonic in f . As f increases, profits decrease until the
connected component shrinks and profits increase (discontinuously) due to the reduced total cost of
partnership formation. The discontinuity in the comparative statics in f implies a coordination failure
at values of f just below the values at which total industry profits show a discontinuous increase.
The dynamic is a coalitional better response dynamic in which coalitions are restricted to sizes 1 and 2,
raising the question of whether the possibility of larger coalitions (e.g., of size 4) might smoothen some
of these discontinuities.

6. The Evolutionary Nash Program

The Evolutionary Nash Program is the study of connections between evolutionary game theory
and cooperative game theory (see Figure 13). This is similar to the standard Nash Program which
studies connections between noncooperative game theory and cooperative game theory (see, e.g.,
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The Evolutionary Nash Program links...

Evolutionary Game Theory Cooperative Game Theory

for example...

Rest points of an
unperturbed dynamic

The Core

Stochastically stable states
of a perturbed dynamic

Subset of the Core
E.g. the Least Core

Figure 13. The Evolutionary Nash Program. Connections are made between evolutionary game
theory and cooperative game theory. For example, sometimes a state space can be derived from an
underlying cooperative game. For some evolutionary dynamics, the rest points will correspond to the
core of the associated cooperative game. When these dynamics are perturbed, the stochastically stable
states will then correspond to a (possibly strict) subset of the core.

Nash [248]). A cooperative game in characteristic function form is a set of players N and a characteristic
function v(·) : P(N)→ R+ from subsets S ⊆ N to the nonnegative real numbers. The characteristic
function shows how much surplus a coalition S ⊆ N can generate. It is typically assumed that
v(∅) = 0.

A characteristic function v is superadditive if, for all S, T ⊆ N, S ∩ T = ∅, we have v(S ∪ T) ≥
v(S) + v(T). A characteristic function v is supermodular if, for all S, T ⊆ N, we have v(S ∪ T) + v(S ∩
T) ≥ v(S) + v(T). Note that supermodularity implies superadditivity. The core is an allocation of
surplus x = (xi)i∈N under the grand coalition N, such that ∑i∈N xi = v(N) and no coalition S can
obtain a higher surplus by leaving the grand coalition: ∑i∈S xi ≥ v(S) for all S ⊆ N. A coalition for
which ∑i∈S xi < v(S) is known as a blocking coalition.

6.1. Recontracting and Nash Demand Games

The question of how a society represented by a cooperative game might converge to the core is an
old one. Feldman [117] and Green [142] give recontracting processes under which subsets of players
S ⊆ N randomly meet, and if they can do better than they do under the current allocation x, that is if
∑i∈S xi < v(S), then they form a coalition with a new allocation x′S such that ∑i∈S x′i = v(S). These
processes eventually reach the core, assuming that the core is nonempty. Note that any such process
suffers from the remainder problem: when a subcoalition S′ leaves a coalition S, it is not clear what
should happen to players in S \ S′. Should they be left in a coalition on their own as in Green [142]?
Should they form singleton coalitions as in Feldman [117]? Each of these makes sense in some context.
For example, if eleven people constitute a discussion group, S, and two of them, S′, decide to go
climbing instead, it makes sense for the discussion group to continue to meet as S \ S′. However, if S
instead formed a football team, the remainder set S \ S′ no longer has enough members to form a
football team, so it may make more sense for them to become singletons.

Young [362] represents a two player cooperative game (N, v(.)) noncooperatively as a Nash
demand game, in which the players each make a demand, and if the demands sum to no more than
v(N), then they obtain their demands. If the demands sum to more than v(N), then they get nothing.
Players have a utility function u(·) that increases in their allocation. Note that, because payoffs arise
from individual strategies, the remainder problem disappears. It is shown that if players adjust
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their demands according to an individualistic best response dynamic with uniform errors, then the
stochastically stable state corresponds to the Nash bargaining solution (Nash [246]), which is within
the core.

Agastya [2,3] expands the model of Young [362] to a multiplayer environment, in which a player
i ∈ N may (sometimes probabilistically) obtain his demand if there exists some S ⊆ N, i ∈ S, such
that the demands of the players in S sum to no more than v(S). For games with a supermodular
characteristic function, convergence to the core occurs under an individualistic best response dynamic.
When this dynamic is perturbed with uniform errors, the stochastically stable allocations are those
within the core that minimize the allocation of the wealthiest player.

Rozen [295] adjusts strategies in the Agastya [2] setup by allowing a player’s strategy to include
not only a demand, but also a list of players with whom he is willing to form coalitions. Under this
setup, results of Agastya [2] do not change. However, this change in the strategy space makes possible
another approach, which is explored in Newton [265].

Newton [265] implements collective agency (in the style of Feldman [117], Green [142]) with
individual strategies (in the style of Agastya [2], Rozen [295], Young [362]). This allows the separation
of collective agency in decision making from collective generation of payoffs. For example, two players
could meet and take a collective decision to not form coalitions with one another, that is to exclude
one another from their sets of acceptable coalition partners. Examples along these lines are quite
easy to come up with. For example, if two employees in a firm find it difficult to work with one
another (perhaps their skill sets overlap too much), they may agree to request that they never be part
of the same team. This would be payoff improving for both of them. The return to collective agency
(compared to the individualistic rules of Agastya [2,3], Rozen [295], Young [362]) allows convergence to
the core to occur for games with a superadditive characteristic function. Moreover, when the dynamic
is perturbed by uniform errors, the stochastically stable state is no longer the minmax outcome as
it is in Agastya [3]. Rather, when u(·) is concave and u(·)/u′(·) is convex, the stochastically stable
state trades off maximizing the wealth of the poorest player against minimizing inequality amongst
the remaining |N| − 1 players. In the boundary case of u(x) = axb, a, b > 0, only the first of these
considerations matters, so stochastic stability results in ‘Rawlsian’ social choice, maximizing the wealth
of the poorest player.

Arnold and Schwalbe [25] give a best response dynamic in which the state includes both a set of
existing coalitions and demands which are satisfied for players in coalition S if they sum to no more
than v(S). This reintroduces the remainder problem, which is treated in the manner of Green [142].
The dynamic is individualistic, with an updating player choosing a demand and to either join an
existing coalition or to form a singleton coalition. Superadditivity is not assumed. However, to obtain
convergence to the core, it is assumed that outside of the core, the strategy choice of players in any
potential blocking coalition is perturbed by uniform errors, and that no errors occur within the core.

Nax [255] obtains convergence to the core, where it exists, treating demands as aspirations, so
that players do not best respond but instead may lower their demands when they are not fulfilled
and increase their demands when there is the possibility of a higher payoff. The state includes a set of
existing coalitions and the remainder problem is treated in the manner of Feldman [117]. The proof
is similar to the proof of convergence in Feldman [117] in that this assumption is leveraged so that
payoffs, and consequently demands, can reduce over time until a jump to a core state is possible.

All perturbations discussed so far in this section are uniform, so stochastic stability emerges from
length-based selection (see Section 4.2.1 for definition). Sawa [313] uses logit errors and steepness-based
selection. This recovers minmax selection by a different route. In Agastya [3], all errors are equally
likely and the stochastically stable state is minmax as it is the wealthiest player who changes his
response most readily to errors made by others. In Newton [265], the wealth of the wealthiest |N| − 1
players matters (and hence, by omission, the wealth of the poorest player) as these players change their
collective response most readily to errors made by the poorest player. In Sawa [313], the stochastically
stable state is minmax as it is the wealthiest player who makes errors most easily. Like Newton [265],
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Sawa [313] has collective agency in the dynamic, specifically the coalitional logit choice rule discussed
in Section 2.1.2, but returns to having a set of existing coalitions included in the state of the Markov
process, hence reintroducing the remainder problem, which is treated in the manner of Feldman [117].

Following work on coordination games discussed in Section 6.4, Hwang and Rey-Bellet [178]
have recently analyzed the two player model of Young [362] under logit errors, also finding the Nash
bargaining solution to be stochastically stable. They obtain these results by extending the technical
results of Hwang and Newton [177] (see Section 8.1.1) to coordination games that satisfy the marginal
bandwagon property of Kandori and Rob [190] (see Section 8.1.1 for definition). They also give results
under intentional errors (see Section 4.2.1 for definition).

The above approach deals with recontracting with transferable surplus. In contrast, Serrano
and Volij [320] consider a model of recontracting over discrete goods—a ‘housing economy’. Each
player is endowed with a single house (the endowment is fixed and does not evolve with the
process) and may only have a single house at any allocation. Every period, some set of players
S ⊆ N may agree to reallocate their endowment in such a way that they all strictly gain relative
to the current allocation. If, when this happens, the allocation of players outside S can no longer
be satisfied (i.e., it depended on the endowments of players in S), then the players outside S are
allocated their endowments (this is an approach to the remainder problem). Errors involve players
agreeing to reallocations that are not a strict improvement for them upon the existing allocation. It is
assumed that errors where a player is indifferent between the old and new allocations are much more
likely than errors which involve a strict payoff loss. The only allocation for which there does not
exist S ⊂ N such that a weakly improving reallocation is possible is the competitive equilibrium
allocation (Roth and Postlewaite [292]). It follows that the competitive equilibrium allocation is
uniquely stochastically stable.

Open Topic 6. Skyrms [331] finds that in (discretized) Nash demand games, the basin of attraction of the
egalitarian norm increases greatly when costless signals (in the style of Lewis [217]) are added to the strategy
space. It is not clear why this is the case, particularly as signaling gives players the opportunity to coordinate on
different asymmetric demand splits with different types. Analysis of simulation data suggests it is related to
the effect of transient information: the information transmitted by signals first grows by evolutionary selection,
but later fades as the system approaches a stable state. Uncovering the mechanisms by which such information
benefits some norms over others would be interesting and important.

6.2. Transferable Utility Matching—The Assignment Game

A special case of a cooperative game is the assignment game (Shapley and Shubik [327]). The player
set can be divided into two disjoint sets, say N = F ∪W (firms and workers), and all surplus is
generated by pairs of players in which one player is in F and one is in W. That is, for any |S| = 2,
v(S) > 0 implies that S = {i, j} for some i ∈ F and j ∈W. For |S| > 2, v(S) is equal to the maximum
amount of surplus that can be generated by such pairs in S.

Several studies have recently shown that, under pairwise dynamics (see Section 2.2.2) of
rematching and surplus sharing, convergence to the core of the assignment problem is assured
(Biró et al. [51], Chen et al. [84], Klaus and Payot [200], Nax et al. [253]). A typical dynamic involves
two agents meeting every period, and if they can improve upon their current allocation by matching
with one another and dividing the resulting surplus, they do so.

Nax and Pradelski [250] consider a perturbed version of such a dynamic. A player’s payoff may
be subject to a ‘shock’ with a probability that, like logit errors, is log-linear in the size of the shock. If a
player, following a shock, has a payoff lower than that which he could achieve by a change of partner,
then he can change his partner. This combination of shock and response adds a discrete element to
the model, bringing it closer to non-transferable models of matching. Using arguments adapted from
Newton and Sawa [261], Nax and Pradelski [250] show that, under this process, the set of stochastically
stable states is a subset of the least core (Maschler et al. [230]), the set of allocations such that the
minimum value of v(S)− ∑i∈S xi over all S ⊂ N is as high as possible. For the assignment game,
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the core is nonempty, and it is clear that the least core lies within the core. Similar results for many to
one matchings with transferable utility are given in Nax and Pradelski [251].

Klaus and Newton [199] analyze a different form of perturbation, allowing errors whereby the
agents in a given pair remain matched yet adjust the allocation they obtain within the pair. As we shall
see below, this weakens the selective power of stochastic stability relative to the model of Nax and
Pradelski [250]. Errors are changes to matches and allocations that do not constitute a weak blocking
by players who make them. This allows the possibility of errors in which no error-committing player
loses allocation, such as when two players, previously matched to other partners, match and share
surplus in such a way that they attain exactly the same allocation as before. This is not a weak blocking
and is therefore an error. This is similar but not identical to the approach of Serrano and Volij [320] to
errors involving indifference discussed in Section 6.1. Error probabilities are assumed to be weakly
decreasing in loss of allocation. If all errors are equally likely, then no selection within the core is
obtained. If errors which cause no allocation loss to the player or players who commit them are more
likely than errors which cause strictly positive allocation losses, then all optimal matchings occur in
some stochastically stable state, but there may be strict selection of allocations amongst players who
have the same partner at every optimal matching.

Pradelski [283] considers the speed of convergence to the core of an assignment game and finds a
decentralized dynamic that attains this convergence in polynomial time. Each player has a changing
aspiration level of utility that he seeks to meet. The result on polynomial time convergence relies
on ‘market sentiment’, by which at any point in time, players on one side of the market (i.e., either
F or W players) can accept allocations slightly below their aspiration level. Interestingly, the result
only holds if market sentiment does not switch too frequently from favoring one side of the market
to favoring the other side of the market. Further work that uses such state variables can be found in
Section 8.4. In contrast, Leshno and Pradelski [214] show that, if transitions from a given matching and
allocation are such that any rematching of a firm and a worker (i) depends only on their allocations at
the existing matching and (ii) is a strict blocking, then the expected time to converge to the core may
increase exponentially in the number of players.

6.3. Non-Transferable Utility Matching—Marriage, College Admissions

Now consider matching with non-transferable utility (Gale and Shapley [134]). That is, the payoffs
of a player depend solely on the identity of those with whom he is matched. This class of problems
includes the marriage problem, in which men and women are matched in pairs; the roommate problem,
in which players of any sex are matched in pairs; and the college admissions problem, in which colleges
are matched to multiple students, whilst each student is only matched to one college. A college is said
to have responsive preferences if its preferences over any two students are independent of the other
students to whom it is matched. A college is said to have substitutable preferences if, whenever it would
admit a student i from a set of students A that contains i, it would also admit student i from set B ⊂ A,
i ∈ B. A matching is pairwise stable if no player can gain by leaving a current partner, and no pair of
players who are not currently matched to one another can gain by matching with one another. The set
of pairwise stable matchings corresponds to the core in the marriage problem, roommate problem, and
college admissions problem when colleges have responsive preferences.

Paths to stability results in such settings give, sometimes implicitly, pairwise dynamics
(Section 2.2.2) under which convergence to stable matchings occur. Such results exist for the marriage
problem (Roth and Vande Vate [293]), variants thereof (e.g., Klaus and Klijn [198]), and the roommate
problem (Diamantoudi et al. [101]). Such dynamics work by randomly selecting a player or pair of
players each period. If an individual is selected and can gain by leaving his or her current partner (if he
or she has one) to become a singleton, then he or she does so. If a pair of players is selected and both
players in the pair can gain by leaving their current partners (if they have them) and getting together,
then they do so. The process is repeated until a stable matching is obtained. For college admissions
problems, if a college has responsive preferences, then the problem reduces to the marriage problem by
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Figure 14. Conventions and bargaining solutions. Each bargaining solution can be justified as the
stochastically stable state of a coordination game under the corresponding behavioral rule and without
reference to any appealing ex-post properties that the solution might have.

mapping each position in a college to a man, and each student to a woman. Kojima and Ünver [203]
give a paths to stability result for many to many matchings when one side of the market has responsive
preferences and the other has substitutable preferences.

The next step is to consider perturbed dynamics. Jackson and Watts [184] and Klaus et al. [201]
do this for uniform errors and find no selection in marriage and roommate problems respectively.
That is, the entire set of stable matchings is stochastically stable. The reason for this is that, under the
unperturbed dynamic, from any unstable matching, it is possible to get closer (under a suitable concept
of similarity) to any stable matching of one’s choice. This implies that it only ever takes one random
error to exit the basin of attraction of a stable matching and eventually reach a stable matching that is
closer to any given target stable matching. Freidlin and Wentzell [125] tree arguments immediately
imply that every stable matching must be stochastically stable.

These arguments are taken further by Newton and Sawa [261], who, for marriage problems,
roommate problems and college admissions with responsive preferences, expand the analysis to cover
any perturbed dynamic (including uniform, logit, probit) for which error probabilities of an individual
or a pair do not depend on the partnerships of other players. Let OS (for ‘one shot’) denote the set
of stable matchings at which the probability of an error occuring is lowest. It is shown that, for any
given z ∈ OS, from a stable matching x /∈ OS, following a single error, no matter what that error is,
it is possible under the unperturbed dynamic to reach a stable matching y that is more similar to z
than x is to z. This implies that the root of any least cost Freidlin and Wentzell [125] tree and hence
any stochastically stable state will be within OS. In particular, under logit errors, similarly to Nax
and Pradelski [250] discussed above, stochastically stable states are within a non-transferable utility
version of the least core of Maschler et al. [230].

Open Topic 7. Some interesting characterizations or examples may arise from dropping Assumption 3 of
Newton and Sawa [261] and allowing error probabilities to depend on the partnerships of players other than
those making the error. For example, it may be that Alice and Diane are friends and that Alice is more likely to
make errors when Diane is in an unhappy partnership and has a low current payoff.

6.4. Bargaining Solutions and Coordination Games

Consider a two player coordination game, the main diagonal of which approximates the efficient
frontier of a convex bargaining set, and that has zero payoffs off-diagonal. Let there be two populations,
each corresponding to one of the positions in the game. Under an individualistic best response
dynamic with uniform errors, Young [364] shows that stochastically stable states approximate the
Kalai-Smorodinsky bargaining solution (Kalai and Smorodinsky [188]). Newton [264] extends the
model to a coalitional dynamic and finds that stochastically stable states approximate the Nash
bargaining solution (Nash [246]).

Naidu et al. [244] consider errors which are intentional (see Section 4.2.1) in that the only errors that
a player might make are those that involve attempting to coordinate on an outcome that corresponds
to a higher equilibrium payoff than the equilibrium payoff associated with his best response. Players
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never make errors that ask for less than their best response. Under intentional uniform errors,
the stochastically stable states again approximate the Nash bargaining solution. Note that under
both unintentional uniform errors and intentional uniform errors, all errors in the support of the error
distribution occur with similar probability, so there is no steepness-based selection and results are
driven by length-based selection (see Section 4.2.1).

Using the technical results of Hwang and Newton [177] (see Section 8.1.1), Hwang et al. [179]
extend the analysis to logit dynamics. Logit errors introduce steepness-based selection as well as
length-based selection. Under intentional logit errors, it turns out that length-based selection is
dominated by steepness-based selection, and given that players who earn higher payoffs have more to
lose from making errors and miscoordinating, stochastically stable states approximate the Egalitarian
bargaining solution of Kalai [189]. This contrasts with previous justifications of Egalitarianism which
have usually assumed some symmetry in the problem faced (Alexander and Skyrms [4]) or invoked
ex-ante symmetry of players with respect to their position in the game (Binmore [49,50]). Under
unintentional logit errors (i.e., the standard logit choice rule), length-based and steepness-based
selection combine and a new (piecewise) bargaining solution, the logit bargaining solution, emerges.
This solution shares features of some of the existing bargaining solutions, but exhibits some curious
nonmonotonicities. Results on the relationship between bargaining solutions and the stochastically
stable states of coordination games under individualistic dynamics are summarized in Figure 14.

7. Behavioral Dynamics

There exists a rich literature on a variety of behavioral dynamics, rules which specify the current
behavior of agents in a population, given what has occurred in the past. Important earlier work includes
Binmore and Samuelson [47,48], Bomze [62], Friedman [129], Hofbauer and Sigmund [169], Hofbauer
and Weibull [170], Nachbar [242], Ritzberger and Weibull [285], Samuelson and Zhang [299]. This work
concerns processes with both finite and infinite populations under dynamics with both discrete and
continuous time steps, and sometimes the approximation of one type of process by another (Benaïm
and Weibull [39]). Here we consider some recent contributions to this literature.

7.1. Reinforcement Learning

Argiento et al. [23] show that efficient signaling in a two state, two signal setting (similar to the
signaling model of Lewis [217]) can be obtained asymptotically with certainty using the urn based
reinforcement learning model of Roth and Erev [291] and Erev and Roth [111]. A sender observes
the state of nature (state 1 or 2), and chooses a signal (A or B) by drawing a ball from an urn that
corresponds to the state (urns 1 and 2). The receiver observes the signal and chooses an action (1 or 2)
by drawing a ball from an urn that corresponds to the signal (urns A and B). If the receiver’s action
matches the state of nature, then the players ‘win’. When they win, they each add a ball to the relevant
urns. For example, if a win is attained when the state of nature is 1, the sender chooses B and the
receiver chooses 1, then the sender adds a B ball to urn 1 and the receiver adds a 1 ball to urn B.
This process converges to one of two possible signaling systems in which state-signal-action triplets
correspond perfectly, such as when state 1 induces signal B which induces action 1 and state 2 induces
signal A which induces action 2. This result contrasts, qualitatively as the models are very different,
with the evolutionary stability of inefficient communication that was discussed in Section 4.2.3.

The general version of the reinforcement rule of which the above is an example involves each
player, after playing a strategy, adding a number of balls (not necessarily discrete) to his urn for that
strategy. Building on results that stochastic reinforcement models can be approximated by deterministic
replicator dynamics (Beggs [35], Börgers and Sarin [65], Hopkins [173], Laslier et al. [213]), Ianni [180]
shows that if the state (in terms of the probability of players choosing strategies) is close to a strict Nash
equilibrium of the underlying game, then the amount of time that has elapsed under the process (so that
the urns are full enough that learning has become slow) can be chosen so that the process converges
to the Nash equilibrium with arbitrarily high probability. The proof uses the fact that trajectories of
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the replicator dynamic that start within the basin of attraction of a strict Nash equilibrium converge
exponentially fast to show that, for small ε, if learning is made slow enough, the process can be made to
stay within ε of the trajectory of the replicator dynamic with arbitrarily high probability.

An alternative model of reinforcement learning is the Cross Model (Cross [92]), under which
a player updates a probability vector x according to which he plays each of a finite set of actions.
After choosing action i (which occurs with probability xi) and receiving a payoff from the game, the
player transfers a share of the probability mass (1− xi) from the other actions to action i. The share
that is transferred is proportional to the payoff he received. Lahkar and Seymour [209] extend this
model to incorporate the possibility of negative payoffs. If i yields a negative payoff for the player,
then a share of the probability mass xi is transferred to the other actions. The share that is transferred
is proportional to the absolute value of the payoff received. It is noted that unlike the basic Cross
Model, this model cannot be approximated by the replicator dynamic. In particular, any state at
which every player plays strategy i with probability one and obtains a negative payoff cannot be
a rest point of the dynamic (even if it corresponds to a Nash equilibrium of the game), as negative
reinforcement will then transfer probability away from this strategy. Lahkar [211] shows conditions
under which a continuum population playing a stag hunt under this dynamic will converge to all
playing Stag or all playing Hare. If payoffs at the Hare-Hare equilibrium are negative and payoffs at
the Stag-Stag equilibrium are positive and sufficiently large, then the state at which every player plays
Stag is a globally asymptotically stable rest point. If Hare-Hare payoffs are positive, and the payoffs
from playing Stag against Hare is negative and greater in magnitude than the difference between
Stag-Stag and Hare-Hare payoffs, then the state at which every player plays Hare is an almost globally
asymptotically stable rest point, and the state at which every player plays Stag is an unstable rest point.
Other rest points, including polymorphic ones, exist when neither of these conditions is satisfied.

Mertikopoulos and Sandholm [236] follow Sorin [333] and Hofbauer et al. [171] in specifying
reinforcement learning directly in continuous time. A choice map transforms a vector of scores
(cumulative payoffs) from each action over time into mixed strategies. The choice map derives
from maximizing the expected score minus a penalty function, the convexity of which encourages
mixed strategies over pure strategies. Examples of such choice maps include the projection
map (see, e.g., Friedman [129], Lahkar and Sandholm [208]) and the logit map (see, e.g.,
Littlestone and Warmuth [220], Vovk [351]), which is known to be equivalent to the replicator dynamic
(see, e.g., Mertikopoulos and Moustakas [235], Rustichini [298] and citations earlier in this section).
It is shown that iteratively strictly dominated strategies become extinct on solution paths and that,
if penalty functions do not approach infinity at the boundaries of the simplex, then this happens
in finite time. Weakly dominated strategies either become extinct or the profiles on which they are
dominated become extinct. Stationary points of the dynamic correspond to Nash equilibria and strict
Nash equilibria are asymptotically stable.

7.2. Imitation

Consider a setting in which two players repeatedly play a finite, symmetric game. One of the
players, Alice, follows the behavioral rule imitate-if-better by which at period t + 1 she imitates the
action of the other player at period t if and only if the other player obtained a higher payoff than Alice
did in period t. Otherwise, Alice plays the same action at t + 1 as she did at t. Duersch et al. [106]
consider the zero-sum game defined by the payoff differences

∆(x, y) = π(x, y)− π(y, x) (10)
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and find conditions under which the sum of payoffs (across time) earned by a player playing against
an imitate-if-better player are bounded above as time goes to infinity. When this is the case, they say
that imitation is not subject to a money pump. An imitation cycle is a cycle of action pairs

(x0, y0), (x1, y1), . . . , (xn, yn) = (x0, y0) (11)

such that the non-imitative player always outperforms the imitator, ∆(xt, yt) > 0, and the imitator
imitates, so yt+1 = xt. It is shown that imitation is subject to a money pump if and only if there exists
an imitation cycle. An imitation cycle such as (11) can be expanded into a cycle whereby a single player
improves their payoff at each step,

(x0, y0), (x0, y1 = x0), (x1, y1), . . . , (12)

. . . , (xn−1, yn−1), (xn−1, yn = xn−1), (xn, yn) = (x0, y0).

Hence the absence of such a payoff improving cycle implies the absence of an imitation cycle. A game
is a generalized ordinal potential game if and only if there does not exist such a payoff improving
cycle (Monderer and Shapley [240]), therefore in such a game the imitator cannot be subject to a
money pump. It is also shown that if there exists an ordering on the strategy set such that payoffs are
quasiconcave in a player’s own strategy, then no money pump exists.

Sawa and Zusai [311] consider (continuum) population games with imitation rules according
to which a revising player who is playing i considers an alternative strategy j drawn at random
according to the strategy distribution given by the population state. With some strictly positive
state dependent probability the player switches from i to j. Players can be of different types and the
switching probability is assumed to be formed by adding together two nonnegative terms. The first
term does not vary across types and can vary according to the identity of the strategy pair {i, j} under
consideration. This is standard. The second term differs across types but does not depend on {i, j}.
The second term, by inducing positive imitation independently of i and j, moves all types towards the
average distribution of strategies in the population. Over time, the process converges towards the set
of states at which there is an equal proportion of each type playing each strategy (the Wright manifold)
and the process approximates standard imitative dynamics without type diversity. It is interesting
to note that the variability of the non-type dependent term in the switching rate according to the
strategy pair {i, j} makes these generalized replicator dynamics possibly nonmonotonic in that strategies
that generate higher payoffs need not have higher growth rates. Consequently, even a strategy that is
strictly dominated by another (pure) strategy may survive indefinitely (Sethi [324]).

Mertikopoulos and Sandholm [237] consider a class of dynamics, Riemannian game dynamics,
in which the trajectory of the dynamic is the maximizer of an expression equal to a gain function
minus a cost function. For a given population state and a trajectory vector that implies a direction
and speed of motion, the gain function equals the scalar product of the vector of payoffs from each
action and the trajectory vector. It takes higher values for trajectories that increase the share of the
population taking actions currently associated with high payoffs and grows linearly with the speed of
motion. For a given population state, the cost function is a positive definite quadratic form, so that it
increases quadratically in the speed of motion for any given direction. These cost functions correspond
to Riemannian metrics on the state space. For example, the dynamic associated with the Euclidean
metric is the projection dynamic (Nagurney and Zhang [243]) and the dynamic association with the
Shahshahani metric (Shahshahani [326]) is the replicator dynamic. Results on existence and uniqueness
of solution trajectories are derived and it is shown that Riemannian game dynamics satisfy positive
correlation, a form of payoff monotonicity. When a Riemannian metric is the Hessian matrix of a convex
function, dynamics are similar to those derived for reinforcement learning models by Mertikopoulos
and Sandholm [236] (see discussion in Section 7.1). For this class, it is shown that evolutionarily
stable states are asymptotically stable and, for contractive (also known as negative semi-definite) games,
a Lyapunov function is derived.
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Laraki and Mertikopoulos [212] consider imitative dynamics in which, rather than the growth
rates of strategies in a population being determined by payoffs, the rate of change of such growth
rates, or even higher order derivatives, are determined by payoffs. One difficulty with analyzing such
dynamics has been that relevant second order optimization methods are defined for unconstrained
problems rather than for problems constrained by a strategy space. Flåm and Morgan [120] tackle this
problem by projecting velocities of orbits onto a subspace of admissible directions. Recognizing that
projective methods can lead to discontinuous dynamics, Laraki and Mertikopoulos [212] instead
propose a solution based on the equivalence between the replicator dynamic and logit choice
according to cumulative payoff scores used in reinforcement learning (see Section 7.1 for more on this
equivalence). That is, they consider dynamics on unconstrained spaces of cumulative scores, including
second and higher order cumulative scores created from summing lower order cumulative scores.
An equivalence exists between choice based on these higher order scores and higher order variants of
the replicator dynamic. Iteratively strictly dominated strategies go extinct under these higher order
dynamics and this happens n orders of magnitude as fast under the nth order replicator dynamic as it
does under the first order (i.e., standard) replicator dynamic. Moreover, unlike the standard replicator
dynamic, for n ≥ 2, if the dynamic starts at rest, then weakly dominated strategies are guaranteed to
go extinct. To see this, consider n = 2. If, for Alice, strategy i weakly dominates strategy j, then the
acceleration towards strategy i will be greater than the acceleration towards strategy j. If the process
starts from rest, this will give the dynamic a greater velocity towards strategy i relative to strategy j.
This velocity advantage will be maintained even if the strategy profiles at which i has a strict advantage
over j go extinct so that acceleration towards i and j becomes the same. This argument cannot be
made iteratively for the following reason. It may be that following the elimination of Alice’s strategy j,
Bob’s strategy k weakly dominates his strategy l. However, in the time taken for j to be eliminated,
it may be the case that strategy l has gained a considerable velocity advantage relative to strategy k.
Consequently, the previous argument does not work. Analogous results to those regarding stability
and convergence of the standard replicator dynamic are given for the higher order dynamics.

Hofbauer et al. [171] consider the fact that logit choice according to cumulative payoffs over time
is a solution of the replicator dynamic (see Section 7.1). Cumulative payoffs over time are equal to
average payoffs over time multiplied by time t, so logit choice according to cumulative payoffs can be
seen as logit choice according to time average payoffs multiplied by t. As t diverges to infinity, this
approximates a best response to time average payoffs (we can think of t as equivalent to 1/η, with η

measuring perturbations from best response). However, best responses to time average payoffs are
solutions to a process in which time average payoffs evolve according to a best response dynamic.
Together, these results imply that the time average of the replicator dynamic is a perturbed solution to
the best response dynamic, with the magnitude of perturbations vanishing over time. Accordingly,
results can be derived on the long run behavior of the replicator dynamic in terms of the long run
behavior of the best response dynamic on time average payoffs.

7.3. Sampling Equilibrium and Best Experienced Payoff Dynamics

Osborne and Rubinstein [275] model procedurally rational choice (Simon [330]) in the following
manner. Consider a symmetric game with a finite set of actions A = {a1, . . . , am}. Let p be a probability
distribution over A. Suppose that a player samples each of the actions in A once, playing the sampled
action against an opponent who plays the mixed strategy given by p. Each of the actions in A is
thereby associated with a realized payoff. The player who is sampling selects the action with the
highest realized payoff (with uniform tie breaking). Letting wi(p) be the probability that this decision
rule selects action ai, a sampling equilibrium is a mixed strategy p∗ that satisfies wi(p∗) = p∗i for all i.
Osborne and Rubinstein [275] suggest that that these equilibria can be interpreted as rest points of a
process whereby players in a large population are randomly matched to play the game, any given
player in the population plays the same action every time he plays, and players entering the population
sample each action and select one as described above.
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Sethi [325] formalizes the idea of the dynamic proposed above with a family of dynamics according
to which, if the current distribution of actions in the population is p, then the share of action ai in the
population increases if and only if wi(p) > p. Under these dynamics, even strict Nash equilibria need
not be stable, in contrast to payoff monotone dynamics (Weibull [353]). Furthermore, it can be the
case that the only stable rest points are sampling equilibria in which strictly dominated strategies are
played with positive probability. A symmetric action profile (ai, ai, . . . , ai) is inferior if, for every action
aj 6= ai, there exists ak 6= ai such that a player’s payoff from playing ak when one opponent plays
aj and the other opponents play ai is strictly greater than his payoff at the symmetric action profile
(ai, ai, ai, . . . , ai). For games with three or more players, if a sampling equilibrium p∗ corresponds to the
play of a strict Nash equilibrium that is an inferior action profile, then p∗ is unstable. We can connect
this observation to the literature discussed in Section 2 by noting that if, for every alternative action
aj, a symmetric strict Nash equilibrium in ai has a profitable pairwise coalitional deviation involving
aj, then the Nash equilibrium must be inferior. Recent work by Cárdenas et al. [78] fits a model of
sampling equilibrium to experimental data on games with negative externalities, replicating features
of the data despite being parameter free.

Mantilla et al. [221] study public goods games under the above dynamics. It transpires that Nash
equilibrium profiles, even in dominant strategies, are unstable for a broad range of payoff specifications.
Instability of non contribution (resp. full contribution) can arise when a player samples the action of
contribution, encounters a mutant amongst his opponents who contributes (resp. does not contribute),
and misattributes the positive (resp. negative) externality from this opponent’s contribution (resp.
non-contribution) to his own contribution. The precise conditions under which these effects lead to
instability depend on a property of the binomial distribution.

Sandholm et al. [305] refer to the above dynamic and its variants as the best experienced payoff
dynamics. In particular, they note possible alternatives for three parts of the dynamic, (i) the possibility
of only sampling a subset of alternatives rather than every alternative; (ii) the size of the sample taken
for each action, which as the above cited papers already discuss, can be more than one; and (iii) the
tie breaking rule when several strategies give equal expected payoffs (calculated from the sample).
It is emphasized that (iii) is more important in extensive form games than in normal form games, in
which it generically has no effect. It is noted that these dynamics are characterized by systems of
polynomial equations with rational coefficients and a discussion is given of concepts and methods
relevant to solving such equations. Computer assisted proofs are used to analyze the centipede game
(Rosenthal [290]) when all strategies are sampled once and the tie breaking rule is to choose the rule
that defects and ends the game at the earliest decision node, thus making it more difficult to achieve
cooperation. Under this rule, for centipede games with at least three decision nodes, the equilibrium
corresponding to the backward induction solution is unstable. Furthermore, for centipede games with
three to six decision nodes, there also exists an asymptotically stable interior rest point of the dynamic.
Note that, as every Nash equilibrium of the centipede game involves the game ending after the first
decision node, this stable rest point does not correspond to a Nash equilibrium. This result continues to
hold even for moderately large sample sizes. However, if a best experienced payoff dynamic samples
all strategies a large number of times it approaches a best response dynamic, under which, as we shall
now see, results differ.

7.4. Best and Better Response

Xu [359] considers generic, finite, extensive-form games of perfect information and shows that
every solution trajectory of the continuous best response dynamic (Gilboa and Matsui [138]) converges
to some Nash equilibrium component (a set of Nash equilibria with the same outcome). It is further
shown that, from any interior initial state, the dynamic converges to the backwards induction solution
for the extensive form game. Furthermore, this last result also holds for approximate best response
dynamics that are sufficiently close to the standard best response dynamic. An approximate best



Games 2018, 9, 31 41 of 66

response dynamic is one in which updating players may play best responses to strategy profiles which
are close to the current strategy profile as well as best responses to the current profile itself.

Zusai [369] defines the tempered best response dynamics, amending the continuous time best response
dynamic for continuous populations. The idea is that the further the current payoff of a player is
from his best response payoff, the more likely he should be to update his strategy to a best response.
Hence, under these dynamics, the revision rate is strictly increasing in payoff gain from switching to a
best response. Furthermore, the revision rate is zero when there is zero payoff gain, hence all Nash
equilibria are rest points of the dynamic, even if they are not strict. Similar stability results to those
that hold for standard best response dynamics (for potential games etc.) continue to hold. A similar
dynamic is considered for finite populations in Kuzmics [206], discussed in Section 8.1.4. Zusai [371]
generalizes the analysis to a broader class of dynamics in which the set of actions from which a player
can choose at any given revision opportunity is allowed to vary and shows asymptotic stability of
(regular) evolutionarily stable states (Taylor and Jonker [340]).

Building on the work of Ritzberger and Weibull [285], Balkenborg et al. [32] define a generalized
best-reply correspondence as a correspondence that, independently for each player, maps mixed strategy
profiles to sets of mixed strategies that contain at least one best response. Under some continuity
assumptions, the set of such correspondences can be considered as a lattice with a minimal element,
σ, that coincides with a standard best response correspondence on a dense set of strategy profiles.
The set of independent strategy mixtures over given subsets of the pure strategies is called a minimal
asymptotically stable face if it is asymptotically stable under some generalized best-reply correspondence
but does not contain any other such set. Inclusion relations are given between these faces and variants
of existing set-valued solution concepts, which are defined either with reference to σ or with reference
to the standard best response correspondence.

Leslie et al. [215] consider two player, zero-sum, discounted payoff, stochastic games, in which
in every period there is a state of nature (from some finite set) that determines available actions and
payoffs. The actions chosen by the players affect the probability of the state of nature in the subsequent
period. A stationary strategy specifies a mixture over actions for each state of nature. From such a
game, an auxiliary game can be derived for each state of nature (Shapley [328]). In the auxiliary game,
continuation payoffs from each state of nature in the future are assumed to be fixed. Of course, when
the players optimize, these continuation payoffs are consistent with optimization in every auxiliary
game. Leslie et al. [215] define a continuous time best response dynamic for such games. Under this
dynamic, the state space comprises both stationary strategies and the continuation values according to
which best responses are calculated. Strategies evolve according to a best response dynamic according
to the payoffs in the auxiliary game, taking continuation values as given. Continuation values evolve
by moving closer to the expected discounted payoffs that players believe they will obtain by best
responding in the auxiliary game. The dynamic is designed so that continuation values adjust at a
slower rate than strategies. It is shown that, under this dynamic, strategies converge to the set of
stationary optimal strategies of the game, and that both continuation payoffs and expected discounted
payoffs converge to the same value, which is consistent with the strategies.

A finite game is weakly acyclic (Young [361]) if, from any strategy profile, there exists a path to
a Nash equilibrium on which, at each step of the path, the strategy of only one player is altered
and this player gains payoff as a consequence. Young [361] showed that, when a game is weakly
acyclic and each position in the game is occupied by one player, we can expect play to converge to
Nash equilibrium under best response dynamics, provided that strategy updating by players is not
so predictable that absorbing cycles exist. Arieli and Young [24] show that similar convergence can
be expected when each position in the game is occupied by a finite population, the players of which
update their strategies using pairwise comparison dynamics (i.e., better response). However, the time
until such convergence occurs can grow exponentially with population size. The reason for this is that
in order to leverage the weak acyclicity assumption, a sufficient amount of homogeneity in the play of
at least some of the populations is required, and it may take a long time for this to occur. To achieve
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this homogeneity faster, it is assumed that for any strategy pair {i, j} corresponding to a position in
the game, the ability of any member of the corresponding population to switch from i to j is controlled
by a state variable αij, which switches on and off at random. This induces sufficient homogeneity
that, starting from any state, the process will be, on average, close to Nash equilibrium over a long
enough time period, no matter how large the population is. See Section 8.4 for further examples
of the use of state variables to achieve desirable outcomes. Also see Hurkens [176] for results on
convergence under best response dynamics to sets of strategies that are closed under rational behavior
(Basu and Weibull [33]).

Babichenko [29], building on Babichenko [30], considers aggregative games. The games are
aggregative in that the payoff of a player only depends on his own strategy and an aggregate
statistic based on the strategies of all of the players. A common example is Cournot oligopoly,
in which a player’s strategy is a production quantity and aggregate production determines the price
(see Section 4.2.5 for results on conventional behavior in such settings). A best react function differs from
a best response in that it does not take into account the effect of a player’s strategy on the aggregate
statistic. However, if this effect is small, the best react function can approximate the best response
function (Alos-Ferrer and Ania [10]). Babichenko [29] considers a dynamic whereby players best react
to an approximation to the aggregate statistic x given by the highest integer multiple of small ε that is
lower than x. This makes the best react correspondence constant on small intervals of the aggregate
statistic, which is then used to show that the dynamic converges to an approximate Nash equilibrium
in a number of steps of order at most n log n, where n is the number of players and is assumed to
be large.

Bednarik and Hofbauer [34] consider a rock, paper, scissors game with a Nash equilibrium that
corresponds to population shares e that are globally asymptotically stable under the continuous best
response dynamic. They show that, when the dynamic is discretized so that a proportion ε of the
population adjusts their strategies at every time step of length ε, then the formerly asymptotically
stable state becomes a repeller and cyclic behavior within an attracting region becomes stable. To see
why this is so, consider a state x that is close to e, but has a slightly lower proportion of players playing
rock and a slightly higher proportion of players playing paper. The best response to x is then to play
scissors, and when a proportion ε of the population best respond to x, this will lead to a state that is
further from e than x is from e. This may be related to experimental evidence on non-convergence in
rock-paper-scissors games, discussed in Section 9.1.

In two strategy symmetric games, a best response strategy will also be favored by the replicator
dynamic, giving identical basins of attraction under the best response dynamic and the replicator
dynamic. Golman and Page [139] (see also erratum) show that there exist three strategy games with
arbitrarily small overlap between basins of attraction. For example, the basin of attraction of strategy
i under the best response dynamic can include 1− ε of the state space, while the basin of attraction
of strategy j under the replicator dynamic also includes 1− ε of the state space. A parameterized
sequence of such games is given in which ε→ 0 as the parameter becomes large.

Open Topic 8. There is broad scope to develop dynamics that incorporate multiple agency (Section 2) for
continuum populations. Such models will answer questions such as: (i) What are sensible ways to model multiple
agency (e.g., coalitional updating) in an environment in which interaction is driven by random matching?
(ii) When will the presence of multiple agency give different results to individualistic models and when will it
make no difference?

7.5. Continuous Strategy Sets

Several recent papers have considered dynamics on games with continuous strategy sets. In the
case where the population is a continuum, the population state is then a probability measure over
the strategy set. Typically, these papers show existence of a solution trajectory under some continuity
assumptions on the payoffs and the dynamic, then show convergence results for some classes of games.
Cheung [86] considers pairwise comparison dynamics (i.e., better response), by which any given player
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considers some alternative strategy (chosen from an exogenous distribution) to her current strategy,
and may switch if the alternative strategy gives a greater payoff. Convergence results are proven for
potential games and negative semi-definite (i.e., contractive) games. Cheung [87] considers imitative
dynamics such as the replicator dynamic, in which the alternative strategies that may be imitated
are determined by the state. Specifically, the distribution over alternatives that was exogenous for
the pairwise comparison dynamic is set equal to the state. Convergence to restricted equilibria, Nash
equilibria of the game after some subset of strategies is removed, is shown for potential games. These
two papers consider weak convergence of measures, as it seems reasonable that states in which every
member of the population plays a strategy that is close to strategy x (under some metric that makes
sense given the model), can be thought of as close to the state at which every member of the population
plays strategy x.

Lahkar and Riedel [207] consider the logit dynamic, referring to a fixed point of this dynamic
as a logit equilibrium. As logit choice is stochastic, these equilibria are diffuse (non-atomic), so
strong convergence of measures is not too strong a convergence concept. Results on convergence
to logit equilibria are shown for potential games and negative semi-definite (i.e., contractive)
games. Perkins and Leslie [280] consider a model of stochastic fictitious play in which players
play according to the logit choice rule after forming their beliefs according to a fictitious play rule
(see, e.g., Benaïm and Hirsch [37], Benaım and Hirsch [38], Brown [74], Fudenberg and Kreps [130],
Kaniovski and Young [192]). Convergence of such a process to the logit dynamic is shown and a
convergence result given for negative definite games. The paper also considers the case where
measures on the strategy space represent mixed strategies rather than population states. In this case,
they show convergence to logit equilibria under stochastic fictitious play for two player zero-sum
games with continuous action sets.

Newton [266] considers stochastic stability (see Section 4.2.1) on general state spaces. Finite state
space models of stochastic stability (Kandori et al. [191], Young [361]) dispensed with the requirement
for the many regularity assumptions (compactness, continuity, bounded convergence) found in the
prior literature (Freidlin and Wentzell [125], Kifer [194]). Newton [266] returns to infinite state spaces,
but considers a finite set of orders of magnitude of transition probabilities. This allows a weakening of
assumptions so that, for example, best response dynamics can be considered even when best response
correspondences are discontinuous. Conditions are given under which the standard tools of stochastic
stability can be used.

7.6. Completely Uncoupled Dynamics

A dynamic is uncoupled if the strategy choice of a player does not directly depend on the payoffs
of the other players (see Hart and Mas-Colell [151]). Examples include best response dynamics, better
response, and fictitious play. A dynamic is completely uncoupled if the strategy choice of a player does
not depend on any information about the other players (see Foster and Young [124]). That is, when
a player updates his strategy he does not take into account the payoffs or actions of other players,
nor even the number of other players in the game. One agenda in this literature is to give simple
dynamics that lead to convergence to Nash equilibria or approximate Nash equilibria. One example
is regret testing (Foster and Young [124], Germano and Lugosi [137]) under which each player plays
some current mixed strategy most of the time, but occasionally chooses a random action. Every so
often, a player compares the average payoff from his strategy to his average payoffs from other actions
and if the latter exceeds the former by some tolerance level τ > 0, then he randomly chooses another
strategy. A further example is trial and error learning (Pradelski and Young [282], Young [366]) in which
a player’s proclivity to experiment with new actions is determined by a state variable, the player’s
mood (see Section 8.4 for further discussion).

Another agenda is to describe possibility and impossibility results. That is, to answer the question
of whether dynamics can achieve certain types of convergence. For example, there exist games for
which there is no continuous adjustment dynamic—a class of dynamics based on better response, that
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converges to Nash equilibrium (see Section 8.6 of Hofbauer and Sigmund [168]), and even games
for which no uncoupled dynamic converges to Nash equilibrium (see Hart and Mas-Colell [151]).
Building on this and other work (e.g., Foster and Young [122], Hart and Mansour [149], Hart and
Mas-Colell [150,152], Hart [153], Young [365]), Babichenko [28] gives bounds on what convergence is
possible under completely uncoupled dynamics. Defining a completely uncoupled strategy mapping as
a mapping from sets of possible actions to completely uncoupled learning rules, he shows that there
is no completely uncoupled strategy mapping that leads to almost sure convergence of play to pure
Nash equilibrium in every finite generic game that has a pure Nash equilibrium. However, if action
sets are distinct, in that any two players’ action sets are disjoint, then such a strategy mapping exists.
Moreover, if players are allowed to condition behavior on either their own identity (their index in the
player set) or on the number of players in the game, then such a strategy mapping exists. If learning
rules are restricted to have finite memory, then the negative results of the paper must continue to hold,
whereas the positive results continue to hold if all possible payoffs can be encoded in finite memory.

Note that finding a Nash equilibrium is, in a sense, a hard problem, even without restricting
search procedures to be uncoupled or completely uncoupled. In the terminology of computer
science, NP problems are the class of problems whose answers can be verified in polynomial time.
Daskalakis et al. [95] show that finding a (possibly mixed) Nash equilibrium belongs to a class of
problems that they call PPAD-complete, a subset of NP problems. One distinguishing feature of PPAD
is that a solution is known to exist for such problems. For example, it is known that a mixed strategy
Nash equilibrium exists for finite games (Nash [247]). It is very likely that PPAD is not a subset of the
class of problems P that can be solved by an algorithm that runs in polynomial time (see discussion in
Daskalakis et al. [95]).

8. General Methodology

8.1. Perturbed Dynamics and Stochastic Stability

8.1.1. Least Cost Transition Paths

Minimal cost spanning tree methods for finding stochastically stable states (see Young [363])
are conceptually simple and, given least cost transition paths between conventions, can be found in
polynomial time using Edmonds’ algorithm (Chu and Liu [90], Edmonds [107]). Finding least cost
transitions, however, can be tricky. Often the number of conventions remains the same as the size of a
finite population increases, but the number of paths between conventions increases exponentially.

To find the cost of least cost transitions between conventions, Sandholm and Staudigl [304],
building on Staudigl [337], show that, as a finite population grows large, transition costs can be
approximated by solutions to continuous optimal control problems. They illustrate the method by
analyzing stochastic stability under logit choice of three strategy coordination games that satisfy the
marginal bandwagon property of (Kandori and Rob [190]), under which, for strategies i, j, k, i /∈ {j, k},
we have that π(i, i)− π(i, k) > π(j, i)− π(j, k). That is, players of strategy i gain most from playing
against strategy i compared to playing against another strategy k.

Hwang and Newton [177] consider two populations, members of which are matched to play
coordination games with an arbitrary number of strategies and zero payoff off-diagonal, and who
make decisions according to the logit choice rule. For large populations, the costs of escaping the
basins of attraction of conventions are estimated by explicitly constructing bounding functions. See
Section 6.4 for an application of these results to the relationship between bargaining solutions and
stochastic stability in coordination games.

8.1.2. Cyclic Decomposition

Freidlin and Wentzell [125] (Chapter 6.6) show that there exists a cyclic decomposition of a perturbed
adaptive dynamic. The underlying idea is simple and we illustrate using an example. Assume that the
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v w x y z
v 0 3 4 11 11
w 5 0 2 11 12
x 2 5 0 9 12
y 6 10 10 0 3
z 10 10 10 4 0

Figure 15. Transition costs between conventions. For transitions between conventions in the set
{v, w, x, y, z}, the table gives the cost of a transition from the convention specified by the row to the
convention specified by the column. For example, a transition from v to x has a cost of 4.

v w

x

y

z

3

22
4 3

10

7

Figure 16. Cyclic decomposition. The unperturbed dynamic converges to conventions in the set
{v, w, x, y, z}. A directed edge from a convention corresponds to a least cost transition from this
convention as per Figure 15. This decomposes the set of conventions into two sets, {v, w, x} and {y, z}.
Transition costs between these two sets are determined as described in the main text.

dynamic without perturbations converges to the set of conventions {v, w, x, y, z} and that the costs of
least cost transitions between these conventions are given by Figure 15. From each convention, consider
the least cost transition to another convention, illustrated by directed edges between conventions in
Figure 16, in which the edges are labeled with their associated cost. This decomposes the state space
into cycles. The process will, in expectation, spend a long time within a cycle before it transits to
another cycle.

The cycles themselves can be treated as stable sets with associated transition costs. The transition
cost from the set {v, w, x} to {y, z} is determined by finding the lowest cost tree on {v, w, x, ξ}, rooted
at ξ, for some ξ ∈ {y, z}. The reader can check that this tree is {v → w, w → x, x → y} which has a
cost of 14. To find the cost of the transition from {v, w, x} to {y, z} we subtract from this cost the cost of
the lowest cost tree on {v, w, x}, which is {w→ x, x → v} rooted at v, which has a cost of 4. Hence the
cost of the transition from {v, w, x} to {y, z} is 10, as illustrated in Figure 16. The cost of the transition
from {y, z} to {v, w, x} can be similarly determined to be 7. Economists are likely to be familiar with
such modified cost arguments via the finite state space exposition of Ellison [108], who gives corollaries
of the hitting time results of Freidlin and Wentzell [125] and the finite state space stochastic stability
characterization of Young [361].

The above shows that, for small perturbations, the process will spend much more time in {v, w, z}
than in {y, z}, and within {v, w, z} will spend much more time at convention v than at any other
convention. The grouping of states into cycles, which in turn can be grouped together in metacycles
and so on, gives an idea of the medium term behavior of the dynamic process. The cyclic decomposition
has recently been described in a finite state space setup, first by Cui and Zhai [94] and then by Levine
and Modica [216].
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Finally, we note that Peski [281] uses Edmonds’ algorithm, which is closely related to the cyclic
decomposition, to show that in symmetric, two strategy, two player coordination games played on
any network under the best response dynamic with uniform errors, the convention at which every
player plays the risk dominant strategy is stochastically stable, adding to existing results that the
convention in the risk dominant strategy is uniquely stochastically stable on large enough complete
networks (Kandori et al. [191], Young [361]), but may not be uniquely stochastically stable on some
networks (Blume [60]). For completeness, consider the contrast of uniform errors with results for
logit choice. Risk dominance is uniquely stochastically stable under asynchronous (only one player
updates his strategy at a time) logit choice on any network. This is due to the fact that the game
has a potential function and potential maximizers are stochastically stable under asynchronous logit
(Blume [59]). Potential maximizing profiles need not be stochastically stable when synchronicity in
strategy updating is possible (see Alós-Ferrer and Netzer [13], Marden and Shamma [224]).

8.1.3. Convergence Time

For a coordination game like Figure 4[ii] played on a network, Young [368] calls a set of players
autonomous if, fixing the actions of all other players, potential is maximized when all of the players
in the set play A. When this is the case, the hitting time for the process to reach a state in which
all of these players play A can be bounded. If the entire network is decomposable into such sets of
bounded size, then the convergence time for the whole network can be similarly bounded. Ideas of
autonomy can also be used to find stochastically stable states in coordination games with heterogeneous
preferences (Section 4.2.2) and to consider the relationship between the aggregation of incentives and
the aggregation of agency (Section 2.4).

Norman [269] considers dynamics with a switching cost. For example, under best response, if the
current strategy profile is s, player i may switch from si to ŝi if and only if

πi(ŝi, s−i)− πi(s) ≥ δ, (13)

where δ > 0 is the switching cost and δ = 0 corresponds to a standard best response dynamic.
Consider a two player, two strategy coordination game with strategies s1, s2. A finite population has
two conventions under the best response dynamic, each corresponding to one of the Nash equilibria
in pure strategies. There is also a mixed Nash equilibrium of the game. For population states in
which strategy shares approximate the probabilities under the mixed Nash equilibrium, individuals
will be almost indifferent between s1 and s2. Hence, if a switching cost δ > 0 is present, at such
states, individuals playing either strategy will not choose to switch strategies. New conventions are
created at these states due to the switching costs. These intermediate stable states will be visited by the
process along transitions between the two preexisting conventions. By arguments found in Freidlin
and Wentzell [125] and popularized in economics by Ellison [108], these intermediate conventions
can speed the process of getting from one convention to another. For example, if, with δ = 0, it takes
10 uniform errors to move between homogeneous conventions and, with δ = δ̄ > 0, it takes 5 errors
to move from a homogeneous to heterogeneous convention or vice versa, then the expected time to
transit from one homogeneous convention to the other is of order ε−10 when δ = 0, and is of order ε−5

when δ = δ̄, as the sum of two quantities of order ε−5 is also of order ε−5. This result on switching costs
reducing waiting times generalizes, for which see the cited paper. Note that the potential conservative
effect of coalitional behavior noted in Section 2.2.1 operates according to the same mechanism as
this switching cost effect, but in the other direction, as some intermediate conventions cease to be
conventions following the introduction of coalitional behavior.

Kreindler and Young [204,205] bound convergence time under the logit dynamic for coordination
games (Figure 4ii) on a complete network and on any network respectively. Unlike the other papers on
convergence time in this section, they deal with finite, non-vanishing amounts of noise and do not
consider transitions between conventions, but give conditions under which there is a strictly positive
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expected per period increase in the number of players choosing A. This is a function of the error rate,
the payoff α and the network. For high enough error rate and high enough α, they find a bound on
expected waiting time that works for all networks.

8.1.4. Elimination of Weakly Dominated Strategies

Kuzmics [206] considers normal form games in which each position in the game corresponds to a
finite population. A best response dynamic is considered, with an individual’s switching rate given
by an increasing (from zero) function of the difference between the payoff from a best response and
the payoff from his current strategy. The dynamic is perturbed by uniform errors. Error probabilities
are taken to zero as population sizes approach infinity, with the product of error probability and
population size approaching infinity. It is shown that, if the switching rate is insensitive to small
payoff differences, then states at which a weakly dominated strategy is played may have positive
probability under the limiting invariant measure. This is because the strategy profiles at which a
weakly dominated strategy does worse than a strategy that dominates it may themselves become rare
as ε→ 0. When this is the case, the payoff difference between the dominated and dominating strategies
will be low, so that if the rate of switching to best responses is insensitive to small payoff differences,
the flow of probability away from the weakly dominated strategy due to best responses may not
always outweigh the flow of probability towards it due to errors. A similar dynamic is considered for
continuum populations in Zusai [369], discussed in Section 7.4.

8.2. Further Stability Results

Ely and Sandholm [109] present a model in which players in a population have fixed types
and the state of the dynamic is a Bayesian strategy that specifies a distribution over strategies for
every type. The number of each type in the population, together with this strategy, then determines
aggregate behavior. It is shown that, when the Bayesian strategies evolve under the best response
dynamic, aggregate behavior can be described by a simplified best response dynamic that takes
aggregate behavior as its state. The dynamic is aggregable. Zusai [370] studies nonaggregable dynamics.
In particular, it is shown that the tempered best response dynamic (see Section 7.4) is nonaggregable:
if payoff differences affect switching rates so that some types are evolving faster than others, then
different Bayesian strategies that induce the same aggregate behavior may induce different aggregate
trajectories. Several other common dynamics are likewise shown to be nonaggregable.

Heller [159] shows that, contrary to what was previously thought, the concept of limit evolutionarily
stable strategy (limit ESS) of Selten [319] does not imply neutral stability. A limit ESS is a limit of ESSs
of some sequence of perturbed games in which each strategy must be played with at least some
nonnegative probability that approaches zero. This does not imply neutral stability as it may be that
some strategy i is a limit ESS and that on the convergent sequences of perturbed games that make this
so, strategy j does not outperform strategy i due to the small probability with which some strategy
k is played. However, without the play of strategy k, it may be that i can be outperformed by an
invading strategy j, contradicting neutral stability of i. Any ESS in a sequence of convergent ESS
must, by definition, be robust to small invasions of other strategies. Heller [159] strengthens this
requirement and defines uniform limit ESS by requiring the definition of small to remain the same
along the sequence. Neutral stability is then implied in the limit by continuity.

Heller [161] analyzes the evolutionary stability of belief-free equilibria (Ely et al. [110]), a type of
equilibrium of repeated games in which players do not observe the actions of their opponents but
receive private signals which are correlated with those actions. A sequential equilibrium is belief-free
if continuation strategies are optimal independently of beliefs about opponents’ histories of actions.
Heller [161] shows that, if a belief-free equilibrium is evolutionarily stable, then it must be trivial,
meaning that, independently of history, equilibrium strategies must specify that, each period, a Nash
equilibrium of the stage game be played. If signals are informative, an equivalent result for neutral
stability holds. In this case, a non-trivial belief-free equilibrium can be invaded by a mutant strategy
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that plays actions that are optimal per the specified continuation equilibrium, but uses information
from the signals to induce correlation in actions so as to earn higher payoffs when playing against itself.

Van Veelen [347] considers indirect invasions, in which an incumbent strategy s∗ is invaded by
a strategy s′ that is neutral with respect to s∗, following which another strategy invades and strictly
outperform s′. Specifically, strategy s∗ is robust against indirect invasions (RAII) if there does not exist
a sequence of mutations, s∗ = s0, s1, . . . , sm, such that si is neutrally unstable but not evolutionarily
unstable against si+1 for i = 0, . . . , m− 2, and sm−1 is evolutionarily unstable against sm. Placing the
concept within the inclusion hierarchy of existing concepts, any evolutionarily stable strategy is RAII,
any RAII strategy is neutrally stable, and any neutrally stable strategy is a Nash equilibrium. Moreover,
equivalence classes of strategies that are reachable from one another via sequences of neutral mutations
are shown to be the same as minimal evolutionarily stable sets of strategies under the definitions of
Thomas [341] and Balkenborg and Schlag [31].

Building on previous work (Bendor and Swistak [40], Boyd and Lorberbaum [72], Farrell and
Ware [116], Selten and Hammerstein [318]) that has shown the non-existence of evolutionarily stable
strategies in repeated games (due to mutations off the equilibrium path) and the existence of neutrally
stable strategies in such games, García and van Veelen [136] consider strategies that are robust against
indirect invasions as per Van Veelen [347] (discussed above). For any two player repeated game, they
show that any incumbent repeated game strategy s can be neutrally invaded by a strategy s′ that
differs from s only in that its behavior after some time t no longer depends on the opponent’s action
at time t. That is, making a connection to Section 3, assortativity between future action sequences
played between s′ types is unaffected by actions at time t. Consequently, (i) if profile (s′, s′) does
not lead to a Nash equilibrium of the stage game being played at t, then s′ can be invaded by some
strategy s∗ that maximizes its stage game payoff at t. Furthermore; (ii) if (s′, s′) does not lead to
efficient play at t amongst symmetric feasible action profiles, then s′ can be invaded by some strategy
s̃ that uses actions at t as a signal to induce assortativity, in that, in subsequent periods, s̃ plays
efficiently when playing against s̃ and as s when playing against s′. The reader may recognize
arguments (i) and (ii) as almost perfect parallels of the arguments supporting Nash behavior and
efficient behavior in Newton [268] as discussed in Section 3.2.1. Argument (ii) is a secret handshake
argument (Robson [288]), the connections to assortativity of which were remarked at the end of
Section 4.1.4.

8.3. Further Convergence Results

Oyarzun and Ruf [278] consider stochastic processes in which the object of interest is a variable
Pt that takes values from zero to one, for example the rate of adoption of some technology, or
the probability of choosing an optimal action in a decision problem. Sufficient conditions are
given for Pt to converge to one with high probability as t → ∞. Firstly, the expected relative
hazard rate, (Pt+1 − Pt)/Pt(1− Pt) (Young [367]), is bounded below so that Pt is a submartingale (see, e.g.,
Williams [354]). Secondly, the difference between successive values of Pt is required to be sufficiently
small. This convergence result is applied to the individual learning model of Börgers et al. [66].
It is further shown that if the difference between successive values of Pt diminishes over time at
an appropriate rate, convergence obtains almost surely. This result is applied to a variant of the
imitative dynamic of Schlag [316] and to the reinforcement learning model of Erev and Roth [111]
(see Section 7.1).

8.4. Distributed control

Rather than ask what the implications of evolutionary dynamics are for games, the literature on
distributed control asks how a decentralized system can be designed to achieve some goal (Marden
and Shamma [223]). It may be impossible for components (agents) within a system to communicate
with some centralized decision maker, or even with each other, so it may be necessary to instead focus
on the optimal design of agents’ decision rules so as to best achieve the goals of a planner. For example,
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swarm robotics (see, e.g., Brambilla et al. [73], Nemitz et al. [258]) aims to accomplish complex global
tasks through the interactions of large groups of autonomous agents. Quijano et al. [284] discuss
how distributed control can be used in urban planning to create smart cities, giving as examples the
design of lighting systems, efficient power generation by microgrids and the control of drainage
systems. The literature is particularly concerned with concerns of efficiency, computational complexity
(difficulty of computations) and time complexity (number of iterations required for convergence).

From an efficiency perspective, it may not always be possible to design a system that achieves
the optimal outcome. The price of anarchy is a measure of efficiency defined to equal the ratio of
the optimal value of a goal function to the worst possible equilibrium outcome. For games of
resource allocation amongst agents, recent results on the price of anarchy under Nash equilibrium
and under a form of correlated equilibrium are found in Marden and Roughgarden [222] and
Roughgarden [294] respectively.

One question that can be asked is whether payoffs for agents can be chosen to give a potential
game structure, thus ensuring convergence under a variety of common dynamics. Again in the context
of resource allocation, one possibility is for the marginal utility of a resource to an agent to be set equal
to the marginal increase in the goal function, taking as given the other agents that hold the resource.
Another alternative that also generates a potential game is to use a weighted Shapley value (Marden
and Wierman [225]).

Regarding computational complexity, work has been done to reduce the complexity of dynamics
that are known to have nice convergence properties. For example, Marden et al. [226] give a version
of fictitious play in which a player, rather than considering the historical distribution of play by each
of his opponents separately, instead assesses the effectiveness of actions against entire action profiles
(excluding his own action) played in past periods, effectively assuming correlation in opponents’ play.
In finite potential games, this dynamic is shown to converge almost surely to a pure Nash equilibrium.

Additional state variables can be added to a dynamic for the explicit purpose of obtaining desirable
properties related to efficiency, complexity or convergence. Building on work of Young [366] that
gives convergence to Nash equilibrium, Pradelski and Young [282] give dynamics in which an agent’s
mood affects his likelihood of experimentation, and the dynamic converges to an efficient (in terms of
sums of utilities) Nash equilibrium with arbitrarily high probability. Marden et al. [227] do similarly,
but for efficient strategy profiles rather than just Nash equilibria. Similar use of an additional state
variable is found in the use of ‘market sentiment’ in Pradelski [283], which was discussed in Section 6.2.
Marden [228] extends the idea of potential to incorporate such a state variable, defining a potential
function φ on action profiles and the state variable so that (i) fixing the value of the state variable, φ is
a standard potential function on action profiles, and (ii) as long as the action profile remains the same,
φ increases as the state evolves.

Open Topic 9. Distributed control is an area in which the methods discussed in Section 2 could be especially
fruitful, especially as there is no prejudice as to what may constitute an agent. Indeed, Marden and Shamma [223]
note that “There is some flexibility in defining what constitutes a single player. For example in wind energy
harvesting, a player could be a single turbine or a group of turbines.” Consequently, we can imagine systems in
which both the wind turbine and the group of turbines exhibit agency in a complementary manner.

8.5. Software and Simulations

Izquierdo et al. [183] introduce “ABED: Agent-Based Simulation of Evolutionary Game
Dynamics”, open source software that, for one and two population models, can simulate many
of the dynamic processes covered in this survey (see Sections 4.2 and 7), including imitative dynamics,
dynamics based on sampling, and dynamics based on best responses. It offers options to adjust the
underlying game, the size of the populations, the decision rule, the likelihood of perturbations, and
the frequency and synchronicity of updating. Visual outputs track the proportions with which each
strategy is played in the populations and the expected payoffs of each strategy.
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Figure 17. Information and context in an experiment. If only the shaded elements pertain, this is
sufficient to make it possible that players follow an individualistic best response dynamic. However, all
of the elements are compatible with players following such a dynamic, so there is nothing wrong with
including any of them in a situational context that is being explored. Some of the elements, such as
telling subjects individual best responses, might be expected to work towards inducing such a dynamic,
whereas others, such as allowing subjects to talk, might be expected to work against it and in favor of
some other dynamic such as coalitional best response.

Angus and Newton [22] make MATLAB® code (GNU Octave Version 3.4.0 and Gnuplot 4.2.5,
Massachusetts Institute of Technology, Cambridge, MA, USA) and documentation publically available
for simulating games on networks under coalitional better response dynamics. The full model is a
multi-generational group selection model of the evolution of the ability to participate in collective
agency (discussed in Section 2.3), but the subroutines that deal with coalitional updating on networks
within a single generation build on code written for Newton and Angus [259], which was published
without simulations as Newton and Angus [260].

9. Empirics

It can be asked whether the type of models surveyed in the current paper are a good fit for
observed behavior. “If players play game X under a best response dynamic, then they will converge to
convention y” is the type of theorem that we find in these models. If a researcher attempts to replicate
this implication empirically and convergence to y is not obtained, then it must be either that game X
was not being played or that players did not follow a best response dynamic. Both of these things may
be affected by all kinds of extraneous factors that are not in the original model. Consider Figure 17.
The shaded inputs are sufficient for a player to follow a best response dynamic. The remaining inputs
are then unnecessary. If a player does indeed follow a best response dynamic, his behavior will be
the same whether or not he knows the payoffs of his opponents, in the same sense that if Newton’s
apple were to suddenly become aware of the laws of motion, this would not affect its acceleration
towards the ground. However, it may be that knowledge of his opponents’ payoffs does indeed affect
a player’s choices, creating a situation in which the theoretical model does not apply. The knowledge
is not part of the model, but is part of the situational context. The importance of extraneous context is
something about which the theoretical models have little to say, but about which much can be learned
from empirical studies.

Another point to consider is that distinct behavioral dynamics may differ from one another only
when they are not at rest. A given state y may be a rest point under multiple dynamics which exhibit
different speeds and trajectories when not at rest. It may be that players play game X and convergence
to y occurs, but that we do not observe the intervening periods during which convergence occurs and,
consequently, are left with multiple plausible candidates for the exact dynamic, although dynamics for
which y is not a rest point can be ruled out. Furthermore, different dynamics can have very different
basins of attraction corresponding to any given rest point (see, e.g., Golman and Page [139], discussed
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in Section 7.4), so without knowing the process, it will not be possible to infer the stability properties
of the observed rest point. From an empirical perspective, this shows that it is important to observe
systems that are not at rest in order to distinguish between different dynamics.

9.1. Best and Better Response

Oprea et al. [274] have subjects play a hawk-dove game in continuous time, earning flow payoffs
based on the current strategy profile. Both one population and two population treatments are carried
out. In the one population treatment, play converges to close to the mixed Nash equilibrium
proportions. In the two population treatment, play converges to an equilibrium in which one
population plays Hawk and the other plays Dove. Both of these results are in accordance with
the predictions of several theoretical dynamics (best response, replicator etc.). Subjects are shown
information on their own strategy and payoffs and the average strategy and payoffs of their opponents.
Note that the actual payoffs in this experiment are given by the average payoff of the game played
against all opponents. Payoffs in the standard theoretical models can indeed be interpreted in this way,
but can also be interpreted as expected payoffs under random matching or, in continuum populations,
as average realized payoffs under random matching. This emphasizes that the mapping of theory to
experiment is not one to one.

Cason et al. [80] consider a similar setup to the paper above, but consider rock, paper, scissors
games in both continuous and discrete time. Here we discuss the continuous case. Players choose
mixed strategies from a heat map on a simplex that shows them which strategies offer the highest
instantaneous payoffs. In one treatment a player moves instantly to the chosen strategy, in another
treatment his strategy moves continuously towards his chosen ‘target’. Cyclic average behavior is
observed. When the game payoffs are chosen so that the Nash equilibrium is stable (unstable) under
the continuous best response dynamic, the amplitude of cycles is observed to decrease (increase) over
time, but not as much as it would under the theoretical dynamic. In particular, in the stable case,
average play (within a period) does not come to approximate the mixed strategy Nash equilibrium.
This is perhaps related to the low population size of eight. In fact, the possibility of discretization in
rock, paper, scissors games leading to stable cyclic behavior is suggested by the theoretical results of
Bednarik and Hofbauer [34], discussed in Section 7.4.

Doraszelski et al. [105] considers the frequency response (FR) market, a market in which electricity
providers are paid to adjust supply to maintain the frequency of oscillations of alternating current in the
United Kingdom electric power grid within a 1% band of 50 Hertz. A learning model is fitted to the data
that has two components. (i) Suppliers of FR form beliefs about the prices offered by other suppliers
through a fictitious play dynamic that, similarly to Marden et al. [226] (see Section 8.4), assumes
correlation in the prices offered by the other suppliers. This dynamic is discounted so that recent
periods are weighted more heavily. (ii) Suppliers learn about the model of demand for FR through
adaptive learning, estimating demand as an econometrician might (Evans and Honkapohja [113]).
They find that, following an initial period of disorder after the market was created, there was a period in
which their model considerably outperforms equilibrium predictions. However, this outperformance
does not persist into the final part of their dataset, which they interpret as indicating that suppliers
had by then become more adept at rapidly adjusting to changing market conditions.

Following in the footsteps of Young and Burke [360], who use evolutionary methods to study crop
sharing norms, Koch and Nax [202] study groundwater usage by farmers in the Upper Big Blue district
of Nebraska in the United States of America. The model, one of common resource usage (see also Sethi
and Somanathan [322]), is a stochastic game, with the state variable being the amount of groundwater
at the start of a farming season. The solution concept used for the game as a whole is Markov perfect
equilibrium, but holding fixed continuation values in auxiliary games for possible future groundwater
states, equilibrium behavior in the current period is justified by the convergence of a better-reply (i.e.,
better response) dynamic (Dindoš and Mezzetti [103], Friedman and Mezzetti [127]). This is similar
to the convergence of strategies, taking continuation values as given, shown by Leslie et al. [215]
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(discussed in Section 7.4), who also show convergence of continuation values under a best response
dynamic designed specifically for stochastic games. Koch and Nax [202] find that, contrary to their
model’s predictions, there is no empirical support for strategic substitutability in grou ndwater usage.
To the contrary, low groundwater usage by farmers seems to induce low usage by other farmers.

9.2. Imitation

Friedman et al. [128] consider a Cournot oligopoly game (two and three player treatments).
Subjects observe the actions taken and payoffs gained by themselves and their opponents in the
previous period. Unlike previous experimental studies (e.g., Huck et al. [174]) that have confirmed
predictions that Walrasian equilibrium will arise (see discussion in Section 4.2.5 above), they find that,
after initial increases in production move play towards the Walrasian outcome, production decreases,
eventually reaching levels close to collusive profit maximizing outcomes as players mimic reductions
in production by their opponents. One way of interpreting this behavior is that players create a new
agent, coming to adopt a new heuristic that communicates via play and improves the welfare of all
(see Section 2, in particular Open Topic 2).

Clemm von Hohenberg et al. [91] study a model in which an individual has an opinion oi before he
is subject to social influence. After he is subjected to social influence from a population with opinions
distributed according to f , he has an opinion vi. The difference in opinion vi − oi is modelled as being a
linear function of the first four moments of f . The parameters in the model are linked to three theories
of social influence, (i) the linear positive model in which players adjust their opinion towards average
opinion, with the size of the adjustment linear in the distance they find themselves from the average;
(ii) the moderated positive model in which individuals are less influenced by those with whom they
have large differences of opinion; (iii) the negative influence model in which individuals are repelled by
the opinions of those with whom they have large differences of opinion. The study asks participants
for an opinion after reading an article and being shown a distribution of the opinions of others (or a
simulacrum thereof). Data from the experiment fits model (i). Using the model to predict long run
dynamics in large populations, they thus show that social influence will reduce variance in opinions.
Shortly after data for the experiment were collected, the tool used to collect the data was changed so
that users had to give an opinion before being shown the distribution of prior opinions. Data from
after this change further supports the results of the study.

Mohlin et al. [238] consider data collected by Östling et al. [276] on the play of a lowest unique
positive integer game in which, simultaneously, each player chooses a positive integer that is less
than or equal to some maximum value K, and the player that chooses the lowest integer that has
not been chosen by any other player wins. Mohlin et al. [238] find that a learning model they call
similarity-weighted global cumulative imitation does a reasonable job of tracking the data. The model
is essentially a reinforcement learning model (see Section 7.1) with two differences. Firstly, a player
reinforces the weights he gives to strategies according to the outcomes of the strategies played by
every player, not just the strategy he himself played. Secondly, strategies close to the winning integer,
and not just the winning integer itself, are positively reinforced.

9.3. Completely Uncoupled Dynamics

Burton-Chellew et al. [76] considers three models of learning in public goods games. A particular
goal of the paper is to explain declining payoffs when these games are played repeatedly over time.
They consider three treatments, (i) a black box treatment in which participants are told that a black
box into which they make their contribution will calculate the amount they get back according to a
formula; (ii) a treatment in which participants knew they were playing a public goods game and were
told the actions taken in the previous period by the other participants; and (iii) a similar treatment
in which participants were also told the payoffs obtained by other participants. They test three
hypotheses, (a) payoff-based (completely uncoupled—see Section 7.6) learning in which a previous
increase in payoff following an increase (decrease) in contribution leads to an increase (decrease) in
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contribution (and vice versa for decreases in payoffs); (b) payoff-based learning under an assumption
that players have altruistic concerns for the payoffs of other players; and (c) payoff-based learning
plus a conditional cooperation motive that leads to an increase in contribution if other participants
have increased their contributions. The evidence of the study strongly supports hypothesis (i) but not
the other hypotheses, and in fact finds evidence of spite rather than altruism.

Nax et al. [254] also look at payoff-based learning in public goods games and test five specific
behaviors, (i) asymmetric inertia; (ii) asymmetric volatility; (iii) asymmetric breadth, under which
after a decrease (increase) in payoffs players respectively exhibit lower (higher) inertia in action
choice, higher (lower) volatility in action choice, and larger (smaller) changes in their choice of action;
(iv) reversion, under which a change in action that leads to a decrease (increase) in payoff is reversed
(retained); and (v) directional bias, in which if there is a salient ordering on the actions, a player who
has changed their action and seen a payoff increase (decrease) will change it again in the same direction
(change it in the opposite direction). Evidence for all five of these features is found at a statistically
significant level, regardless of whether (a) a pure black box approach is adopted or (b) players have
some idea of the structure of the game.

9.4. Errors in Perturbed Dynamics

Mäs and Nax [229] study non-best response behavior (i.e., errors) in learning models. They look
at two strategy coordination games on networks in which each player has a favorite strategy and the
payoff of a player is the number of his neighbors who take the same strategy as he does, plus a bonus
payoff if he plays his favorite strategy. Most choices (approx. 96%) are best responses to the strategies
of the previous period. Errors (i) exhibit payoff-dependence, decreasing in frequency as conjectured
payoff loss relative to playing a best response increases; (ii) occur with higher probability if the player
changed strategy in the previous period; (iii) occur with higher probability if the players experienced a
decrease in payoff in the previous period; and (iv) exhibit intentional bias (see Section 4.2.1), in that
players are more likely to make an error when their best response is not their favorite strategy. Lim
and Neary [219] conduct a similar experimental study, but consider the language game of Neary [257]
(see Section 4.2.2) played in a population. The study also finds evidence of payoff-dependence and
intentional bias in error probabilities.

Hwang et al. [179] consider two populations, players from which are matched to play a two
player coordination game with zero payoffs off-diagonal (see Section 6.4). In experimental treatments
in which each player in the game has five strategies, high levels of best response play (approx. 90%) are
observed, as well as payoff-dependence and intentional bias in errors. As the game has five strategies
instead of the two strategies in the previous studies, it is possible to understand intentional bias in
the stronger sense that, for a given best response, errors that involve playing strategies associated
with more preferred conventions (from the perspective of the error-making player) are more likely
than errors playing strategies associated with less preferred conventions. In a two strategy model this
cannot be observed, as for a given best response, there is only one strategy that can be played in error.

Open Topic 10. There is much work to be done on evolution and empirics.

(a) That the behavior of subjects in context X is approximated by dynamic Y may be non-generic in the sense
that small changes to X may lead to the connection being broken. This is one reason, beyond the usual
reasons, that replication is important, as any replication will never replicate X exactly (e.g., the weather
outside the laboratory will be different). An important question is then the size of the set of contexts
containing X that can be approximated by Y. This can be examined by including or excluding elements
such as those of Figure 17. Resources permitting, for any positive results (i.e., X → Y mapping), X can be
adjusted until the mapping fails.

(b) Further study of separate attributes and features of decision rules, as discussed in several papers in
Sections 9.3 and 9.4, could be promising. In particular, the cues and information that influence each feature
could be studied.
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(c) There is much real world time series data that could be considered using evolutionary models.
(d) Theories of the evolution of traits, including preferences, should be tested, as suggested in Open Topic 5.

10. Conclusions

We began this survey by summarizing models of behavior as providing answers to the question
who does what to whom and in what circumstances? We have seen how evolutionary game theory can be
used to study and propose answers to every part of this question. Moreover, the models that arise
are rich, deep and plausible, demonstrating how interaction can be complex even when decision
making is not. As the survey has progressed, themes have arisen that bind together seemingly different
topics. For example, assortativity has shown itself to be relevant to a broad range of subject matter.
In particular, we have seen how every noncooperative way of inducing cooperation in prisoner’s
dilemmas, from tit-for-tat, through secret handshakes and parochial mutant invaders, to the most
arcane strategies in repeated games, all amount to inducing assortativity in the strategies that are played
against one another. Another theme has been the importance of length-based and steepness-based
selection in perturbed dynamics. These effects sometimes operate in isolation and sometimes interact.
How they interact depends on properties of the stochastic perturbations, a fact that motivates the
empirical challenge of discovering which kind of perturbations are observed in which contexts.

We conclude by mentioning some areas that the author believes warrant special attention over the
coming years. Firstly, there is still much work to be done to integrate and deepen our understanding
of the role of agency in evolutionary game theory (see Open Topics 1, 2, 8, 9). Work to date has
only scratched the surface of understanding the role of the ‘who’ that is a fundamental part of our
behavioral question. Secondly, evolutionary methods should establish themselves more firmly in
applied social science. For example, there is no reason that simple evolutionary theories cannot
play a significant role in the study of industrial organization. There is a need for someone to do
for evolution and industrial organization what Spiegler [334] has done for bounded rationality and
industrial organization. Thirdly, there should be more rigorous empirical research that gradually and
carefully increases our understanding of evolution and adaptive decision making in practice (see Open
Topics 5 and 10). We need to know under what conditions certain models should be used and under
what conditions they should be avoided.

The author hopes that the reader has found this survey as stimulating to read as it was to write
and that it strengthens the shared intention of researchers in the field that the field grow and flourish.
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