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We consider two fundamental forces that can drive the diffusion of an innovation on a 
network. The first of these forces is potential maximization, a method of aggregating payoff 
incentives of players under individual agency. Potential maximization is related to the 
graph theoretic property of close-knittedness (Young, 2011). The second force is collective 
agency, under which sets of players decide together on whether to adjust their strategies. 
Collective agency is shown to be related to the graph theoretic property of cohesion 
(Morris, 2000). We compare the relative strengths of these forces under (i) different payoff 
specifications in coordination games and (ii) different network structures.

© 2019 Published by Elsevier Inc.

1. Introduction

In 18th century Paris, a boulevardier decides whether to adopt the latest fashion. In 21st century Philadelphia, an 
economist decides whether to vote in the AEA elections. In Seoul, a university student decides which mobile phone to 
purchase. In each of these situations, the individuals concerned will be influenced by the choices of those with whom they 
associate and interact. The diffusion of novel behaviors in such models has been extensively studied. Two important findings 
have been that insular groups of individuals who interact mainly with one another (i) can be relatively stubborn when it 
comes to changing their behavior due to external influence (Morris, 2000), but (ii) can exhibit ‘autonomy’ (Young, 2011) 
in adopting innovative behaviors ahead of others. Now consider the following situations. Two best friends go to the mall 
together and decide which next generation games console to buy. A group of colleagues working in a factory discuss and 
decide whether to join a strike. Some classmates decide which social platform, say WhatsApp or WeChat, to use to organize 
their study program. These situations are similar to the previous situations but have one important difference – they are 
instances of collective agency. That is, the individuals concerned are getting together and asking the question ‘what should 
we do?’ rather than asking ‘what should I do?’ in isolation. Recent work in developmental psychology suggests that such col-
laborative thinking and problem solving is a basic human trait, manifesting itself in human infants at ages as early as 14 
months (Tomasello, 2014; Tomasello and Rakoczy, 2003, and citations therein). Therefore, the question of whether and how 
such behavior affects the diffusion of innovation is of great importance.1

✩ This work is part of the shared intentions agenda that examines collective agency and social structure. For more, go to http://sharedintentions .net. The 
authors thank seminar audiences at the University of Tsukuba, University of Kyoto, Monash University, University of Oxford, University of Cambridge, UC 
Irvine and University of Wisconsin. The manuscript also benefited from conversations with Simon Angus, Jean-Paul Carvalho, Margaret Gilbert, William 
Sandholm, Ryoji Sawa and Peyton Young. JN is the recipient of a KAKENHI Grant-in-Aid for Research Activity Start-up funded by the Japan Society for the 
Promotion of Science (Grant Number: 19K20882) and the Research Fund for Young Scientists funded by Kyoto University (Grant Number: 3809930000).

* Corresponding author.
E-mail addresses: newton@kier.kyoto-u.ac.jp (J. Newton), djs213@imperial.ac.uk (D. Sercombe).

1 Collective agency has been present in modern game theory since the beginning (Neumann, 1928). It underpins concepts such as the Core (Gillies, 1959), 
Strong Equilibrium (Aumann, 1959), Coalition Proofness (Bernheim et al., 1987; Moreno and Wooders, 1996), Unreliable Team Interaction (Bacharach, 1999), 
https://doi.org/10.1016/j.geb.2019.10.007
0899-8256/© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.geb.2019.10.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
http://sharedintentions.net
mailto:newton@kier.kyoto-u.ac.jp
mailto:djs213@imperial.ac.uk
https://doi.org/10.1016/j.geb.2019.10.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geb.2019.10.007&domain=pdf


80 J. Newton, D. Sercombe / Games and Economic Behavior 119 (2020) 79–97
In the current paper, we compare the spread of novel behavior due to individual agency, as represented by a potential 
function, to the spread of novel behavior due to the collective agency of those with strategic complementarities. To do 
this, we use notions of autonomy. A set of players is said to be autonomous if, for whatever reason, they can be expected to 
adopt a novel behavior regardless of the strategies of players outside of the set. Potential autonomy is defined by means of a 
potential function (Monderer and Shapley, 1996) that aggregates individual incentives in a manner consistent with individual 
agency. Local maximizers of potential functions correspond to Nash equilibria (Monderer and Shapley, 1996). Moreover, Ui 
(2001) shows that if a Nash equilibrium globally maximizes potential, then it is robust to incomplete information in the 
sense of Kajii and Morris (1997). Global maximizers of potential functions also correspond to stochastically stable states 
under log-linear dynamics such as the logit choice rule (Blume, 1993). A set of players is potential autonomous if, for any 
fixed strategy profile of players outside of the set, potential is maximized when all the players in the set adopt the novel 
behavior. Young (2011) showed that potential autonomy depends in a positive way on the graph theoretic property of the 
close-knittedness of a set of players. Agency autonomy, introduced here, is defined by collective agency. A set of players 
is agency autonomous if, for any fixed strategy profile of players outside of the set, the payoff of every player in the set is 
increased by collective adoption of the novel behavior. Agency autonomy depends in a positive way on the graph theoretic 
property of the cohesion of a set of players (Morris, 2000). For the class of symmetric 2 × 2 coordination games, we 
give necessary and sufficient conditions for inclusion relations between the set of potential autonomous sets and the set 
of agency autonomous sets for every possible network of interactions between players. This allows us to classify games 
according to which form of autonomy leads to wider adoption of the novel behavior. Furthermore, the conditions for our 
inclusion relations show that the concepts of close-knittedness and cohesion are related via some very natural boundaries 
between different types of coordination game (e.g. flight to safety, stag hunt, zero off-diagonal, mammoth hunt). Thus, the 
concept of potential autonomy, which can be used to make precise statements about behavior under low rationality, myopic 
models of decision making such as the logit choice rule, is intimately linked to agency autonomy, which directly depends 
on high rationality, collective decision making.2

Although these results apply to all networks of interactions, they can be leveraged to make more detailed statements 
about specific networks. For example, it is shown that the complete graph, the network in which every player interacts 
with every other player, is more conducive to agency autonomy relative to potential autonomy than any other network of 
interactions. That is, the complete graph is the network most suited to adoption of novel behavior by means of collective 
agency relative to individual agency. The opposite result is shown for common classes of random graph, which are amongst 
the networks most suited to adoption of novel behavior by means of individual agency relative to collective agency.

Members of highly cohesive sets interact relatively little with those outside of the set. Such sets are thus likely to be 
agency autonomous. That is, cohesion can facilitate the spread of novel behavior. However, the concept of cohesion was 
introduced by Morris (2000) as something that prevented contagion of a set from the outside. How do these observations 
relate to one another? It has already been remarked in Newton and Angus (2015) that while cohesion of a set makes 
it resilient to external contagion, cohesion of its subsets makes it prone to self-contagion via collective agency. Here we 
generalize that observation, introducing coalitional cohesion, a generalization of cohesion. Roughly speaking, the coalitional 
cohesion of a set of players is increasing in its cohesion, but decreasing in the cohesion of any of its subsets that can exhibit 
collective agency. A set of players is then immune to contagion, irrespective of the strategies of players outside of the set, if 
and only if it is sufficiently coalitionally cohesive.

The paper is arranged as follows. Section 2 gives the model and defines potential autonomy and agency autonomy. 
Section 3 analyzes the relationship between these concepts. Section 4 applies the concepts to trees (graphs without cycles), 
sparse random graphs and the complete graph. Section 5 provides a characterization of the immunity of groups of players to 
contagion when the underlying game is any symmetric 2 × 2 coordination game. Section 6 gives some additional discussion 
and concludes. Appendix A contains all proofs. Appendix B applies some of the ideas of the paper to the classic karate club 
network of Zachary (1977).

2. Model

Consider a simple, finite graph � = (V , E).3 The vertex set V represents a set of players. The edge set E , consisting of 
unordered pairs of elements of V , represents connections between players. If two vertices share an edge they are said to be 
neighbors. The number of neighbors of a vertex i ∈ V is the degree of i. For S ⊆ V , denote by d(S) the sum of the degrees of 
vertices in S . Assume that each i ∈ V has at least one neighbor, so that d(S) > 0 for all S ⊆ V , S �= ∅. For T , S ⊆ V , denote 
by d(T , S) the number of edges (i, j) ∈ E such that i ∈ T and j ∈ S . For notational convenience we write d({i}) as d(i) and 
d({i}, S) as d(i, S).

Coalitional Rationalizability (Ambrus, 2009), Coalitional Stochastic Stability (Newton, 2012) and Agency Equilibrium (Newton, 2019). Furthermore, recent 
work has shown that the ability to participate in collective agency will be evolutionarily selected for in a wide variety of environments (Angus and Newton, 
2015; Newton, 2017; Rusch, 2019).

2 Note that although, aside from Appendix B, this paper does not consider equilibrium or any particular process of strategic updating, the results can be 
used in such models. For example, if a set of players is agency autonomous and it makes sense in a given setting for that set to exhibit agency, then we 
can normatively predict the behavior of S under any reasonable equilibrium concept.

3 A simple graph is unweighted, undirected, has no edges from a vertex to itself, and has at most one edge between any pair of vertices.
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Fig. 1. For each combination of A and B , entries give payoffs for the row player. α, β ∈R, α > 0. This parameterization covers all two player, two strategy 
symmetric coordination games up to affine transformation of the payoff matrix.

Fig. 2. Illustration of graph theoretic properties. Stars and circles represent players playing A and B respectively. Lines (solid, dashed, dotted) represent 
edges between neighboring players. In this example, d(S, S) = 7, d(S, V A(σ ) \ S) = 2 and d(S, V A(σ ) \ S) = 3.

A strategy profile σ is a function σ : V → {A, B} that associates each player with one of two strategies, A or B . Strategy 
B can be thought of as a status quo and strategy A can be thought of as some novel behavior. As is standard, let σS , σ−S

denote σ restricted to the domains S and V \ S respectively. Let σ A , σ B be the strategy profiles such that for all i ∈ V , 
σ A(i) = A, σ B(i) = B . Denote by V A(σ ) ⊆ V the set of players who play strategy A at profile σ and by V B(σ ) ⊆ V the set 
of players who play strategy B at profile σ . The payoff of a player at profile σ is the sum of his payoffs when he plays his 
strategy against each of his neighbors on the graph in the game in Fig. 1. Formally, player i’s payoff at σ is

πi(σ ) =
{

(1 + β)d(i, V A(σ )) if σ(i) = A

(β − α)d(i, V A(σ )) + d(i, V B(σ )) if σ(i) = B
. (2.1)

Note that this specification admits an exact potential function (Monderer and Shapley, 1996) given by

Potential (σ ) = (1 + α)d(V A(σ ), V A(σ )) + d(V B(σ ), V B(σ )). (2.2)

The potential function aggregates information from the game in a way that retains information on the incentives of 
players under individual agency. Specifically, if we adjust the strategy of any single player, the change in his payoff equals 
the change in the potential function. Note that our payoff specification implies that strategy profile σ A is the unique global 
maximizer of (2.2).

However, the potential function does not retain information on the incentives of players under collective agency. For 
example, a group of players may be able to adjust their strategies together in such a way that every member of the group 
gains payoff yet potential decreases. To make this clear, it helps, as in Young (2011), to think of d(S, S) as the area of S and 
of d(S, V \ S) as the perimeter of S . Specifically, for a strategy profile σ , we can think of d(S, V A(σ ) \ S), the number of 
neighbors of S who are playing A, as the contaged perimeter of S and d(S, V B(σ ) \ S), the number of neighbors of S who 
are playing B , as the uncontaged perimeter of S (see Fig. 2). Then, from σ such that S ⊆ V B(σ ), if we switch all players in S
from B to A, the change in potential equals

α · area(S)︸ ︷︷ ︸
Internal potential

+ (1 + α) · contaged perimeter(S) − uncontaged perimeter(S)︸ ︷︷ ︸
External potential

,

whereas the change in the sum of payoffs of players in S is

2β · area(S)︸ ︷︷ ︸
Internal coordination

+ (1 + α) · contaged perimeter(S) − uncontaged perimeter(S)︸ ︷︷ ︸
Contagion

.

The contagion effect is the effect of the behavior of players outside of S on the payoffs of S . This effect is perfectly mirrored 
by the potential function. Where the expressions differ is in the generation of potential and payoffs within S itself. The 
analysis of individual agency corresponds to S being a singleton, in which case area(S) = 0 and neither potential nor 
payoffs are internally generated.

Potential is independent of β , so from the perspective of individual strategic motivations, the game in Fig. 1 does not 
change when β is varied. For example, the set of Nash equilibria, including those in mixed strategies, is independent of 
β . When collective agency is considered, this is clearly no longer the case, and different values of β give very different 
incentives. If β < 0, then coordinating on strategy B provides higher payoffs than coordinating on strategy A, so collective 
agency should work towards retaining strategy B even as differences in potential promote the adoption of strategy A. If 
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Fig. 3. Fixing strategies of players outside S , if all players in S switch from B to A, the sum of their payoffs (resp. the payoff of each player in S) increases if 
and only if (α, β) lies above TU Constraint (resp. NTU Constraint) which is weakly decreasing and linear (resp. weakly decreasing, piecewise linear, convex). 
Upper (lower) bounds for these constraints are attained when all players outside S play B (A). Areas in which such a switch increases (decreases) potential 
are illustrated.

β > 0, then agency and potential work in the same direction to promote the spread of strategy A. The expressions above 
indicate that potential change and the sums of payoff changes are precisely aligned when β = α/2. However, this does not 
consider that an increase in the sum of payoffs of a set of players is not enough to guarantee that every player in the set 
gains. Collective choice by a set of players will be constrained by those who do worst out of any anticipated change.

This last point is illustrated in Fig. 3, which uses the expressions given above to illustrate the conditions on α and β
under which a switch by S from B to A will (i) increase the sum of the payoffs of players in S and so be a rational 
coalitional move under transferable utility (TU) constraints, (ii) increase the payoff of every player in S and so be a rational 
coalitional move under non-transferable utility (NTU) constraints, (iii) increase potential.

2.1. Autonomy

To compare individual and collective agency we shall use ideas of autonomy. A set of players S is autonomous if there 
is some reasonable expectation that players in the set will come to play A regardless of the choices of players outside of S . 
There are different ways in which such a reasonable expectation might arise. We examine two of them. Potential autonomy 
considers the behavior of a group as determined by an aggregation of individual incentives in a way that is consistent with 
individual agency.

Definition 1. S ⊆ V is potential autonomous if, for all σ such that σS �= σ A
S ,

Potential (σ A
S ,σ−S) > Potential (σ ).

That is, S is potential autonomous if, for any strategies played by players outside of S , a higher potential is attained when 
players in S all play A than when they play any other strategies. It has been proven that, under asynchronous log-linear 
learning dynamics, potential maximizing strategy profiles are observed more frequently than other strategy profiles in the 
long run (Blume, 1993). Moreover, if S is potential autonomous then the hitting time for strategy profiles such that σ(i) =
A for all i ∈ S can be bounded above independently of the rest of the network. Convergence to A is fast for potential 
autonomous sets (Young, 2011).

From a static perspective, given a set S , arbitrarily fix the strategies of players outside of S and consider the induced 
game with player set S . If S is potential autonomous, then σ A

S maximizes potential in the induced game, so by Theorem 3 
of Ui (2001), σ A is a Nash equilibrium which is robust to incomplete information in the sense of Kajii and Morris (1997).
S
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Young (2011) shows that potential autonomy depends on the graph theoretic property of close-knittedness, which mea-
sures how well integrated each subset of a group of players is with the rest of the group. The close-knittedness of a set 
S ⊆ V is given by

C K (S) := min
S ′⊆S

d(S ′, S)

d(S ′)
.

Remark 1 (Young, 2011). S is potential autonomous if and only if C K (S) > 1
2+α .

Our second concept of autonomy is agency autonomy. Agency autonomy does not require aggregation of incentives but 
instead considers collective agency. If, given the choice, all members of S would like to play A, conditional on others in S
also playing A, regardless of what players in V \ S do, we say that S is agency autonomous.

Definition 2. S ⊆ V is agency autonomous if, for all σ , for all i ∈ S ,

πi(σ
A
S ,σ−S) > πi(σ

B
S ,σ−S).

Similarly to potential autonomy, agency autonomy can be related to a graph theoretic concept, cohesion (Morris, 2000), 
which measures how well integrated into S is the least well integrated member of S . The cohesion of a set S is given by

Co(S) := min
i∈S

d(i, S)

d(i)
.

As we consider coordination games, the inequality in the definition of agency autonomy is hardest to satisfy when 
σ = σ B . Then, for all i ∈ S , we have πi(σ

A
S , σ B−S ) = (1 + β)d(i, S) and πi(σ

B
S , σ B−S ) = d(i), so the condition in the definition 

of agency autonomy becomes (1 + β)d(i, S) > d(i). Rearranging and taking the minimum over all i ∈ S , we have

Remark 2. S is agency autonomous if and only if Co(S) > 1
1+β

.4

Remarks 1 and 2 are illustrated in Fig. 4, the shaded areas in the Figure showing which values of α and β correspond to 
S being potential autonomous and agency autonomous respectively.

The reader may note that potential autonomy is defined by individual agency but depends on close-knittedness, which 
measures the integration of the least well integrated group within S . In contrast, agency autonomy is defined by collective 
agency but depends on cohesion, which measure the integration of the least well integrated individual within S . This 
contrast arises because agency autonomy does not aggregate individual incentives, so that each individual in S holds a veto 
with regard to collective changes in strategy. If we were to instead consider the change in the sum of payoffs of S , then 
Co(S) would be replaced by 2d(S, S)/d(S) in Remark 2.

3. Relations between potential autonomy and agency autonomy

In order to examine the relationship between potential autonomy and agency autonomy, we shall first establish some 
foundational results that link close-knittedness and cohesion. That Co(.) is bounded below by C K (.) is remarked in Young 
(2011). We show that it is also bounded above by 2 C K (.).

Lemma 1. For given � = (V , E), S ⊆ V , 0 ≤ C K (S) ≤ Co(S) ≤ 2 C K (S) ≤ 1.

We say that a set of players S is homogeneous if no subset of S is less well integrated with S than S is with itself. That 
is, S is homogeneous if

C K (S) = d(S, S)

d(S)
.

By Remark 1, to check whether a homogeneous set is potential autonomous only requires us to check whether d(S, S)/d(S) >
1/(2 + α).

4 As Co(S) ≤ 1, Remark 2 implies that agency autonomy is only possible when β > 0. It is possible to define a concept of reverse-agency autonomy 
under which sets wish to play B , regardless of the choices of those outside of the set. This is only possible for β < 0. The upward sloping boundaries 
(in α-β space) for inclusion relations between potential autonomy and agency autonomy that we obtain in Propositions 1,2,3 are instead downwards 
sloping boundaries for inclusion relations between potential autonomy and reverse-agency autonomy. The analysis repeats much of what we do for agency 
autonomy and so is omitted from the current exposition.
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Fig. 4. For a given set of players S , shaded areas indicate parameter values under which S is potential autonomous and agency autonomous. The relationship 
between potential maximization, the strategies of players outside of S , homogeneity, close-knittedness and potential autonomy can be seen reading the 
diagram horizontally. The relationship between collective strategy choice, balancedness, cohesion and agency autonomy can be seen reading the diagram 
vertically.

Define anti-cohesion as how well integrated into S is the most well integrated member of S .

C̃o(S) = max
i∈S

d(i, S)

d(i)
.

When cohesion equals anti-cohesion, Co(S) = C̃o(S), then every member of S is equally well integrated into S and we say 
that S is balanced. It follows immediately from this definition that S is balanced if and only if d(i, S)/d(i) is constant across 
all i ∈ S . For sets with a given proportion of within-set interactions, homogeneous sets maximize close-knittedness and 
balanced sets maximize cohesion.

Lemma 2. C K (S) ≤ d(S,S)
d(S)

, with equality if and only if S is homogeneous. Co(S) ≤ 2d(S,S)
d(S)

, with equality if and only if S is balanced.

The bounds in Lemma 2 (illustrated in Fig. 4) can then be used to show that when S is balanced it must also be 
homogeneous, and that the ratio of cohesion to close-knittedness attains its upper bound. This is useful, as balance is 
defined by equality between d(i, S)/d(i) for |S| possible i ∈ S , whereas homogeneity is defined by 2|S| possible S ′ ⊆ S , so 
balance will usually be easier to check than homogeneity.

Lemma 3. For given � = (V , E), if S ⊆ V is balanced, then S is homogeneous and Co(S) = 2 C K (S).

We are now in a position to compare potential autonomy and agency autonomy. The first proposition concerns a condi-
tion on α and β under which, for every graph � = (V , E), every potential autonomous set is agency autonomous.

Proposition 1. β ≥ 1 + α if and only if for all � = (V , E), every potential autonomous S ⊆ V is also agency autonomous.

That is to say, when β ≥ 1 + α, collective agency can contribute at least as much, possibly more, to the spread of 
novel behavior (strategy A) as can individual agency combined with the perturbations necessary to attain local potential 
maximizing profiles. Considering our games in α-β space (Fig. 5), we see that β ≥ 1 + α corresponds to the area bounded 
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Fig. 5. Propositions 1, 2, 3 illustrated in α-β space. The ordinal ranking of payoffs in the game changes at β = 1 + α, β = α, β = 0, β = −1. At β = α/2, if 
σS changes, then the consequent change in the sum of the payoffs of players in S exactly equals the change in potential.

below by the ‘mammoth hunt’ game, which is similar to a ‘stag hunt’, but with the payoff for stag-stag increased to make 
stag-stag the potential maximizing profile and hence the risk-dominant Nash equilibrium. In Fig. 5, in the area below the 
mammoth hunt the ordinal payoff ranking of the game changes, so Proposition 1 tells us that the area of Fig. 5 in which 
potential autonomy implies agency autonomy corresponds exactly to the area in which the payoff ranking of our game has 
(A, A) preferred to (B, A) to (B, B) to (A, B).

To understand why the bound in Proposition 1 is β = 1 + α, consider a set T ⊆ V that is sufficiently well integrated to 
be both potential autonomous and agency autonomous. Let the set S = T ∪ {i} consist of T together with a single player 
i /∈ T . We can think of i as the least well integrated member of S . Now, given that T is potential autonomous, a necessary 
and sufficient condition for S to be potential autonomous is that, starting from (σ A

T , σ B−T ), potential increases when player 
i switches to strategy A. From (2.2), this condition is

(1 + α)d(i, T ) − d(i, V \ T ) = (2 + α)d(i, T ) − d(i) > 0. (3.1)

Given that T is agency autonomous, we have (see Footnote 4) that β > 0. This implies that strategy pair (A, A) gives a 
higher payoff than (A, B), so players in T will never be deterred from switching to A by the prospect of player i switching 
with them. Therefore, a necessary and sufficient condition for S to be agency autonomous is that, starting from σ B , the 
payoff of player i increases when all of the players in S switch to A. From (2.1), this condition is

(1 + β)d(i, T ) − d(i) > 0. (3.2)

Comparing (3.1) and (3.2), we see that the conditions are equivalent only when β = 1 + α. In all other cases, one of the 
conditions is easier to satisfy than the other.

In the above discussion, the threshold β = 1 + α arises because, by considering general values of d(i, T ), d(i, V \ T ), we 
allow player i to be arbitrarily well integrated in S , and thus Co(S) to be arbitrarily low. At the other extreme, we can 
mandate that S be balanced so that every member of S is equally well integrated in S . As a consequence of balance, the 
individual incentives of each player in S are perfectly aligned with the goal of maximizing the sum of payoffs over all of 
the players in S . As we found in Section 2, this corresponds to a threshold of β = α/2.

Proposition 2. β ≥ α/2 if and only if for all � = (V , E), every balanced, potential autonomous S ⊆ V is also agency autonomous.



86 J. Newton, D. Sercombe / Games and Economic Behavior 119 (2020) 79–97
Fig. 6. Exceptional trees.

For balanced sets, Proposition 2 expands the implications of Proposition 1 to a larger class of games, such as when β = α
and the game is a coordination game with zero payoffs off the main diagonal.

Next consider the reverse problem, to find conditions under which agency autonomy implies potential autonomy. The 
bounding case will be when the condition for agency autonomy (Remark 2) is as easy as possible to satisfy relative to the 
condition for potential autonomy (Remark 1). This case arises when S is balanced. To see this, consider that Co(S) = 2 C K (S)

for balanced S (Lemma 3), but Co(S) ≤ 2 C K (S) for all S (Lemma 1), so for given α, β , the condition for agency autonomy 
is easiest to satisfy relative to the condition for potential autonomy when S is balanced. So we must consider balanced S . 
As discussed before Proposition 2, this makes the problem simple, and we once again have β = α/2 as a bound.

Proposition 3. β ≤ α/2 if and only if for all � = (V , E), every agency autonomous S ⊆ V is also potential autonomous.

So, for low values of β , any behavioral process that works towards potential maximization can contribute at least as 
much, possibly more, to the spread of novel behavior (strategy A) as can collective agency. Proposition 3 is trivially true for 
β ≤ 0, as in this case there exist no agency autonomous sets. This class includes β = 0, where neither Nash equilibrium of 
the game Pareto dominates the other, and β = −1, the stag hunt. For the latter case, we would actually expect any collective 
agency to work against the adoption of strategy A, as when β = −1, any individual’s payoff from strategy A is independent 
of whether or not others play A.

So we have completed a simple comparison of potential autonomy and agency autonomy. Both forms of autonomy 
would seem to be important, giving contrasting ways of considering the behavior of groups. Potential autonomy aggregates 
individual incentives in a way that is consistent with individual agency. Agency autonomy leaves individual incentives as 
they are, but aggregates agency. We now move to consider these concepts for a particular class of graphs, in the process 
proving some results that are of independent graph theoretic interest.

4. Examples

4.1. Trees

In this section we relax the assumption that � = (V , E) be finite and require only that there be a finite upper bound 
on the degree of vertices in �. For finite S ⊆ V , C K (S), Co(S), homogeneity, balancedness and agency autonomy remain 
well defined. We extend the definition of potential autonomy by saying that finite S ⊆ V is potential autonomous if it is 
potential autonomous on any finite subgraph of � that includes S and all adjacent edges (i, j) ∈ E , i ∈ S .

A tree is a connected graph that contains no cycles. An n-regular tree is the unique (up to isomorphism) tree where 
each vertex has degree n, where n is a positive integer. Note that any n-regular tree with n ≥ 2 must be infinite. For given 
� = (V , E) and S ⊆ V , we say that S is connected if the induced subgraph with vertex set S and edge set E S = {(i, j) ∈ E :
i, j ∈ S} is connected. For an n-regular tree, any finite, connected S , |S| ≥ 2, will always include at least one vertex with 
precisely one neighbor in S . Therefore, Co(S) = 1/n. To find C K (S), we first prove a result on homogeneity.

An n-quasiregular tree is a connected component of any graph constructed by removing up to n edges from the n-regular 
tree. In particular, all except for at most n vertices of an n-quasiregular tree have degree n, and no vertices have a degree 
larger than n. A quasiregular tree is an n-quasiregular tree for some n ∈N . The n-star is the tree with n + 1 vertices where 
one vertex is adjacent to all of the others.

Proposition 4. Let � = (V , E) be a tree. Every finite, connected S ⊆ V is homogeneous if and only if � is quasiregular or is one of the 
exceptional trees illustrated in Fig. 6.
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One implication of this result is that every finite, connected S on an n-regular tree is homogeneous and

C K (S) = d(S, S)

d(S)
= |S| − 1

|S|n .

So C K (S) is increasing in |S|. For |S| = 2, C K (S) = 1/2n and as |S| → ∞, C K (S) → 1/n. Given that, for |S| ≥ 2 , Co(S) = 1/n, 
these are, according to the bounds in Lemma 1, the lowest and highest values that C K (S) could take. Notice that Co(S) =
2 C K (S) only when |S| = 1 or 2, so by Lemma 3, if |S| > 2, then S cannot be balanced. We have

Lemma 4. Let � = (V , E) be an n-regular tree. Let S ⊆ V be finite and connected. Then S is balanced if and only if either |S| = 1 or 
|S| = 2.

Although Lemma 4 concerns n-regular trees,5 it can be used to prove the analogue of Proposition 4 for the balance 
property on general trees.

Proposition 5. Let � = (V , E) be a tree. Every finite, connected S ⊆ V is balanced if and only if � is the (unique) tree with |V | = 2.

Turning our attention once more to n-regular trees, Remarks 1, 2 and our expressions for Co(S), C K (S) combine to show 
that for potential autonomy to imply agency autonomy for given finite, connected S , |S| ≥ 2, we require

β ≥ 1 + α − 2 + α

|S| . (4.1)

As the right hand side of (4.1) is increasing in |S| and approaches 1 + α as |S| → ∞, it follows that if we wish potential 
autonomy to imply agency autonomy for any finite, connected S , we require β ≥ 1 + α. That is, for n-regular trees, the 
bound in Proposition 1 is attained. In contrast, if |S| = 2, then, by Lemma 4, S is balanced, so by Proposition 2, we only 
require β ≥ α/2.

4.2. Random graphs

An ensemble of random graphs is a probability measure over a set of graphs. Popular random graph ensembles include 
Erdös-Renyi graphs, random regular graphs and the Configuration Model (for definitions, see Bollobás, 2001). For the named 
ensembles, if in addition to randomly choosing a graph, we randomly choose a vertex within the graph, then the probability 
that the neighborhood of the chosen vertex is a random tree approaches one as the number of vertices increases. For a 
precise definition of this convergence, see Dembo and Montanari (2010), whose definition of random tree we adapt as 
follows.

Let P = {Pn : n ∈ N} be a probability measure on vertex degrees, with finite, positive first moment, and denote by 
ρn = nPn/ 

∑∞
l=0 lPl its size-biased version. Let P0 = P1 = 0, so that every vertex has degree at least two. Let (P , m) denote 

the ensemble of random trees (V , E) generated as follows. Start from a root vertex i1 ∈ V . Choose an integer n according 
to P , then add edges between i1 and n new vertices that we add to V . These n vertices constitute the next generation. 
Continue recursively as follows. For each vertex in the previous generation, generate an integer n independently according 
to ρ , and connect the vertex to n − 1 new vertices. Repeat m times.

Let Pm give probabilities over pairs (�, S), where � = (V , E) and S ⊆ V , |S| = m. Let Pm be determined by the following 
rule. First, randomly choose � according to (P , m). Denote the root vertex by i1 ∈ V and let S1 = {i1}. Then, iterating for 
r = 2, . . . , m, uniformly at random choose j ∈ Sr−1 such that j has at least one neighbor who is not in Sr−1. Uniformly at 
random choose a neighbor of j, say k, who is not in Sr−1 and let Sr = Sr−1 ∪ {k}. Thus Pm gives probabilities over sets S , 
the neighborhoods of which are given by random trees.

Consider Pm as m becomes large. Either there exists a maximum degree of a vertex, say n̂, in which case, with high 
probability, Co(S) and C K (S) approach 1/n̂; or there exists no maximum degree, in which case Co(S) and C K (S) approach 
zero. In either case, with high probability, Co(S) and C K (S) take similar values, and we have the following lemma.

Lemma 5. For all ε > 0,

lim
m→∞Pm

[ {
(�, S) : Co(S) − C K (S) > ε

} ]= 0.

When Co(S) ≈ C K (S), if β < 1 + α, then the condition in Remark 1 is easier to satisfy than the condition in Remark 2. 
Consequently, we can use Lemma 5 to show that if β < 1 + α, then, as S becomes large, the probability of S being agency 
autonomous but not potential autonomous approaches zero.

5 For general trees, finite, connected S ⊆ V , |S| ≥ 2, there will always be some i ∈ S such that d(i, S) = 1. Let n := d(i). By definition of balancedness, we 
then have that S is balanced if and only if d( j, S)/d( j) = 1/n for all j ∈ S . If the tree is regular, then d( j) = n for all j ∈ S , so this condition reduces to d( j, S) = 1
for all j ∈ S . This is only possible when |S| = 2 and is thus an alternative proof of Lemma 4.
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Proposition 6. For given �, let Tα,β,� be the set of all S ⊆ V that are agency autonomous but not potential autonomous. If β < 1 +α, 
then

lim
m→∞Pm

[ {
(�, S) : S ∈ Tα,β,�

} ]= 0,

So for large, connected S , β = 1 + α provides a tight bound between potential autonomy implying agency autonomy 
(Proposition 1) and vice versa (Proposition 6). Thus (random) trees are amongst the graphs least susceptible to contagion 
driven by collective agency as compared to contagion driven by differences in potential.

4.3. Complete graphs

� = (V , E) is complete if {i, j} ∈ E for all i, j ∈ V , i �= j. For all S ⊆ V , i ∈ S , we have d(i, S) = |S| − 1, d(i) = |V | − 1. 
Therefore, for all S ⊆ V , i ∈ S ,

d(i, S)

d(i)
= |S| − 1

|V | − 1
= Co(S),

so S is balanced. Furthermore, the relationship between completeness and balance goes in both directions. The complete 
graph is the unique graph for which every (connected) S ⊆ V is balanced.

Lemma 6. � is complete if and only if every connected S ⊆ V (alternatively, every S ⊆ V ) is balanced.

For balanced S , β = α/2 is a tight bound between potential autonomy implying agency autonomy (Proposition 2) and vice 
versa (Proposition 3). Thus the complete graph is amongst the graphs most susceptible to contagion driven by collective 
agency as compared to contagion driven by differences in potential.

5. Immunity to contagion

Let 	, a set of finite subsets of V , be a set of feasible coalitions. Assume that if S is a feasible coalition (S ∈ 	), then any 
subset of S is also a feasible coalition (T ⊆ S =⇒ T ∈ 	). A set S is immune to contagion by strategy A if, no matter the 
strategies of players outside of S , given that all i ∈ S are playing B , no feasible coalition within S will want to switch to A.

Definition 3. S ⊆ V is immune to contagion if, for all σ , there does not exist T ⊆ S , T ∈ 	 such that for all i ∈ T ,

πi(σ
A

T ,σ B
S\T ,σV \S) − πi(σ

B
S ,σV \S) > 0. (5.1)

Consider the binding case when all players outside of S are already playing strategy A. Whether a feasible coalition 
T ⊂ S will switch to strategy A depends on the incentives of the member of T who has the least to gain from the switch. 
This will be a player in T who is well integrated in S but not too well integrated in T . If this player is sufficiently integrated 
in S relative to T then he will veto any switch by T to strategy A. For S to be immune to contagion, all T ⊆ S , T ∈ 	 must 
contain such a pivotal player. Of these pivotal players, there will exist one who is least integrated in S relative to T . The 
feasible coalition in which this player is pivotal would be the first domino to fall. The level of integration of this player in S
relative to T is the coalitional cohesion of S .

CoCo(S,α,β) := min
T ⊆S
T ∈	

max
i∈T

d(i, S)

d(i)
− 1 + β

2 + α

d(i, T )

d(i)
.

Proposition 7. S is immune to contagion if and only if CoCo(S, α, β) ≥ 1+α
2+α .

Roughly speaking, S must be cohesive enough to avoid contagion from the outside, but not contain subgroups which are 
sufficiently cohesive themselves to wish to switch to A together (see Fig. 7). Note that if 	 is just the set of singletons, 
then CoCo(S, α, β) = Co(S) and we have Co(S) ≥ 1+α

2+α as the condition in Proposition 7, which is effectively the threshold 
in Proposition 1 of Morris (2000). Similarly, for the class of ‘panic’ games (β ≤ −1) bounded above by the stag hunt in 
Fig. 5, the minimum in CoCo(S, α, β) is attained when T is a singleton and we again have that coalitional cohesion equals 
cohesion.

Note that CoCo(S, α, β) is, in general, not independent of the game parameters α and β . However, it is indeed inde-
pendent for several salient values of β , such as β = −1 (stag hunt), β = α/2 (potential change = change in sum of payoffs), 
and β = 1 +α (mammoth hunt). This characterization extends Proposition 3 of Newton and Angus (2015), which effectively 
deals with the case β = α (zero payoff off-diagonal). When β = 1 +α (mammoth hunt), the weightings of d(i, S) and d(i, T )
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Fig. 7. Let � = (V , E) contain the subgraphs on vertex sets S and S ′ shown above. Let 	 be the set of cliques, sets T ⊆ V such that every member of T is 
a neighbor of every other member of T . If β > −1, then values for cohesion and coalitional cohesion are as given above. Note that although S and S ′ are 
equally cohesive, more integrated coalitions are possible within S ′ than within S (d(i, T ′ )/d(i) = 2/3 for i ∈ T ′ , whereas d(i, T )/d(i) = 1/3 for i ∈ T ). Consequently, S ′
is less coalitionally cohesive than S . If β ≤ −1, then coalitional cohesion equals cohesion as discussed in the text.

in the expression for CoCo(S, α, β) are identical. This is the case of a status quo strategy that gives a constant payoff, so 
that Proposition 7 in this case is effectively Lemma 1 of Reich (2016).

Unions of immune sets are not necessarily immune. Consider S , S ′ that are immune to contagion. Let i ∈ S , j ∈ S ′ and 
T = {i, j} ∈ 	. If i and j switch from B to A together, each will gain additional payoff β from the edge that they share. If 
i had already switched to A, then, by switching to A, j would gain additional payoff 1 + α from his edge shared with i. 
Therefore, if β > 1 + α, the incentive for j to participate in a joint switch together with i is greater than the incentive for 
j to switch after i has already switched. Consequently, it is possible that S ∪ S ′ is not immune to contagion. If β ≤ 1 + α, 
then this logic is reversed, so that immunity of S , S ′ implies immunity of S ∪ S ′ .

Proposition 8. Let α be a rational number. Then β ≤ 1 + α if and only if for all � = (V , E), 	, any S, S ′ ⊆ V which are immune to 
contagion have a union S ∪ S ′ which is also immune to contagion.

It is possible to build on Proposition 8 and the intuition behind it to give results on dynamic processes of strategic 
updating. For example, when V is finite and β ≤ 1 + α, there exists a largest set that is immune to contagion. One might 
then expect that, starting from σ B , a myopic coalitional updating rule would eventually converge to a profile at which all 
players outside of this set play A and all players inside the set play B . The approach of the current paper has been to 
abstain from discussion of any particular rule for strategy updating, so aside from a brief discussion of Zachary’s karate club 
in Appendix B, we leave such analysis to other work.6 The reader seeking guidance on how to build such a model is referred 
to Newton (2018).

6. Discussion

We end the paper with a brief discussion of further relationships with the existing literature and prospects for extending 
our analysis.

6.1. The philosophy of conventions

In his classic work on conventions, Lewis (1969) restricts attention to games in which, if we fix the strategy of any 
given player, then that player prefers that other players also play that same strategy. In our notation, this is equivalent 
to −1 ≤ β ≤ 1 + α. Gilbert (1981) later persuasively argued that this restriction was unnecessary. In the current paper, 
Proposition 1 shows that the upper threshold is important to the comparison of potential maximization and collective 
agency, and Proposition 8 shows that it is important to immunity to contagion in the presence of coalitions.

6.2. Coalitional potential functions

Sawa (2014) defines a coalitional potential function as a function such that any change in σS leads to a change in potential 
equal to the sum of the changes in the payoffs of players in S . The examples in the cited paper are broad and economically 
relevant (e.g. exchange economies), but they rely on an absence of externalities. That is, when a coalition S updates its 
strategies, the payoffs of players outside of S are unaffected. This is not the case in the current paper, where, as discussed 
in Section 2, a coalitional potential function of this type is impossible unless β = α/2.

6 For example, there is a literature on dynamics that lead to the play of either risk dominant or payoff dominant strategies. Risk dominance has a 
tendency to succeed under perturbed individualistic best response dynamics (Blume, 2003; Peski, 2010; Norman, 2009), whereas rules that select payoff 
dominance tend to be more elaborate (Pradelski and Young, 2012; Marden et al., 2014). The assumption that α > 0 implies that A is the risk dominant 
action. If β < 0 then B is the payoff dominant action. When this is the case, collective agency will work towards coalitions of players choosing B and in 
favor of payoff dominance.
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6.3. No potential function

Our analytical framework can clearly be applied to any game that admits a potential function. However, the use of 
potential functions does impose limitations. One such limitation is evident in the current context if we consider a directed 
graph of interactions instead of an undirected one. Let V = {i, j} and let there be a single directed edge from player i to 
player j so that player j obtains payoff from this interaction but player i does not. The resulting game does not admit a 
potential function. Of course, the limitations of potential functions do not make them unimportant. Aside from the popular 
classes of games that do admit potential functions, it is also the case that for any game to have a pure strategy Nash 
equilibrium, it must have some aspect of a potential game embedded in its payoff structure (Candogan et al., 2011).7

6.4. Afterword

Before writing this paper, it was not obvious to the authors that interesting connections would exist between the con-
cepts that we consider. After reading, we hope that such connections, and the reasons for them, are clear and transparent. 
Potential maximization (aggregation of individual incentives) is linked to close-knittedness via payoffs, which is linked to 
cohesion via graph theory, which is linked to collective agency (aggregation of agency) via payoffs. The elucidation of this 
connection should be of use to others seeking to bridge the individual and the collective.

Appendix A. Proofs

Proof of Lemma 1.

2 C K (S) = 2 min
S ′⊆S

d(S ′, S)

d(S ′)
= 2 min

S ′⊆S

∑
i∈S ′ d(i, S \ S ′) + 1

2 d(i, S ′)∑
i∈S ′ d(i)

≥ 2 min
S ′⊆S

∑
i∈S ′ 1

2 d(i, S \ S ′) + 1
2 d(i, S ′)∑

i∈S ′ d(i)
= min

S ′⊆S

∑
i∈S ′ d(i, S)∑

i∈S ′ d(i)

≥︸︷︷︸
by mediant
inequality

min
S ′⊆S

min
i∈S ′

d(i, S)

d(i)
= min

i∈S

d(i, S)

d(i)︸ ︷︷ ︸
=Co(S)

≥ min
S ′⊆S

d(S ′, S)

d(S ′)
= C K (S). �

Proof of Lemma 2. The result for C K (S) follows by definition. For Co(S),

Co(S) = min
i∈S

d(i, S)

d(i)
≤︸︷︷︸

by mediant
inequality

∑
j∈S d( j, S)∑

j∈S d( j)
= 2 d(S, S)

d(S)
,

and

S balanced ⇔ min
i∈S

d(i, S)

d(i)
= max

i∈S

d(i, S)

d(i)
⇔ ∀ i, j ∈ S,

d(i, S)

d(i)
= d( j, S)

d( j)

⇔︸︷︷︸
by mediant
inequality

∀ i ∈ S,
d(i, S)

d(i)
=
∑

j∈S d( j, S)∑
j∈S d( j)

= 2 d(S, S)

d(S)
⇔ Co(S) = 2 d(S, S)

d(S)
. �

Proof of Lemma 3.

C K (S) ≥︸︷︷︸
by Lemma 1

1

2
Co(S) =︸︷︷︸

by Lemma 2

d(S, S)

d(S)
≥ min

S ′⊆S

d(S ′, S)

d(S ′)
= C K (S) �

Definition 4. Let P(�, α) denote the set of potential autonomous sets and A(�, α) denote the set of agency autonomous 
sets.

Proof of Proposition 1. If β ≥ 1 + α, S ∈P(�, α), then

Co(S) ≥︸︷︷︸
by Lemma 1

C K (S) >︸︷︷︸
by Remark 1

1

2 + α
≥︸︷︷︸

as β≥1+α

1

1 + β
.

7 Of course, many games have no pure Nash equilibrium. In particular, Goldberg et al. (1968) show that if random payoffs are generated for an m by n
two-person noncooperative game, the probability that a realization has a Nash equilibrium in pure strategies approaches 1 − 1/e as m, n → ∞.
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so by Remark 2, we have that S ∈A(�, β).
To show that the bound on β is tight, for any β < 1 + α we construct a graph � = (V , E) which includes a set S ⊆ V

such that S ∈P(�, α) but S /∈A(�, β). Consider � that includes a clique S ⊆ V . Let i ∈ S be the only vertex in S which has 
any neighbors outside of S . Denote T = S \ {i}.

Note that Co(T ) = C̃o(T ) = (|T | − 1)/|T |, so T is balanced and, by Lemma 3, Co(T ) = 2 C K (T ). So as |T | → ∞, Co(T ) → 1
and C K (T ) → 1/2, implying that for large enough |T |, T is agency autonomous and potential autonomous.

If T is potential autonomous, then S is potential autonomous if and only if, from (σ A
T , σ B−T ), potential increases when 

player i switches to A. Using (2.2), this condition is

|T | (2 + α) − d(i) > 0. (A.1)

If T is agency autonomous, then S is agency autonomous if and only if, from σ B , the payoff of player i increases when 
S switches to A. Using (2.1), this condition is

|T | (1 + β) − d(i) > 0. (A.2)

Therefore, for any β < 1 + α, |T | and d(i) can be chosen such that |T | is large enough that T is potential autonomous, 
and the ratio of |T | to d(i) is such that (A.1) holds but (A.2) does not. So S is potential autonomous but not agency 
autonomous. �
Proof of Proposition 2. If β ≥ α/2, S ∈P(�, α), S is balanced, then

Co(S) =︸︷︷︸
by balance

and Lemma 3

2 C K (S) >︸︷︷︸
by Remark 1

2

2 + α
≥︸︷︷︸

by β≥α/2

1

1 + β
,

so by Remark 2, we have S ∈A(�, β).
Now assume β < α/2. Let � = (V , E) be complete. It follows that the induced subgraph on any set of vertices S is also 

complete. Therefore, for any S ⊆ V , d(i,S)
d(i) = |S|−1

|V |−1 = Co(S) for all i ∈ S , so S is balanced.
If β ≤ 0, then by Remark 2 and Lemma 1, A(�, β) = ∅. However, as any S ⊆ V is balanced, V is balanced and

C K (V ) =︸︷︷︸
by balance

and Lemma 3

1

2
Co(V ) =︸︷︷︸

by balance
and Lemma 2

d(V , V )

d(V )
= 1

2
>︸︷︷︸

as α>0

1

2 + α
,

hence, by Remark 1, we have that V ∈P(�, α) and the inclusion fails.
If 0 < β < α/2, then we have 2

2+α < 1
1+β

. Choose |V |, S ⊆ V , such that 2
2+α < Co(S) < 1

1+β
. By Remark 2 we have that 

S is not agency autonomous. As S is balanced, by Lemma 3 we have Co(S) = 2 C K (S). Therefore C K (S) > 1
2+α and by 

Remark 1 we have that S is potential autonomous. �
Proof of Proposition 3. If β ≤ α/2, S ∈A(�, β), then

C K (S) ≥︸︷︷︸
by Lemma 1

1

2
Co(S) >︸︷︷︸

by Remark 2

1

2

1

1 + β
≥︸︷︷︸

by β≤α/2

1

2 + α

so S ∈P(�, α) by Remark 1.
If β > α/2, similarly to the proof of Proposition 2, let � = (V , E) be complete so that any S ⊆ V is balanced and Co(S) =

|S|−1
|V |−1 . Choose |V |, S ⊆ V , such that 2

2+α > Co(S) > 1
1+β

. By Remark 2 we have that S is agency autonomous. As S is 
balanced, by Lemma 3 we have Co(S) = 2 C K (S). Therefore C K (S) < 1

2+α and by Remark 1 we have that S is not potential 
autonomous. �
Proof of Proposition 4. Let n be the maximal degree of any vertex in �. By the assumption of the model that every vertex 
has at least one neighbor, we have n > 0. Observe that an n-quasiregular tree is always infinite if n > 2.

(=⇒) Assume that � is an infinite tree that is not quasiregular. We construct a pair of subsets S ′ ⊂ S of the vertex set 
of � as follows, depending on whether Case (i) or Case (ii) holds.

Case (i). There exist only finitely many vertices {v1, ..., v N } in � of degree strictly less than n. By definition of 
n-quasiregularity, we must have d({v1, ..., v N }) < nN − n. Let P be the smallest subtree in � containing all vertices in 
the set {v1, ..., v N }. Let v be any vertex in � � P that is a neighbor of some vertex in P . Let S be the smallest subtree in �
containing both P and v .

Case (ii). There exist infinitely many vertices in � of degree strictly less than n. Let v be any vertex in � of maximal 
degree n. Since � is infinite, there exists at least one connected component C0 of � � {v} that contains infinitely many 
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vertices of degree strictly less than n. Take any n + 1 of these vertices in C0, denote them {w1, ..., wn+1}. Let S be the 
smallest subtree in � containing all vertices in the set {v, w1, ..., wn+1}.

In both cases, denote the vertex set of S by S , and let k := |S|. By construction, we have the inequality d(S) < nk −n. Let 
S ′ be the singleton set consisting only of v . Recall that v ∈ S has maximal degree n and is adjacent to precisely one other 
vertex in S . Then we have

d(S, S)

d(S)
>

k − 1

nk − n
= 1

n
= d(S ′, S)

d(S ′)
and so S is not homogeneous.

Now assume that � is a finite tree that is not quasiregular and that every finite, connected S ⊆ V is homogeneous. 
Let v be any vertex in � of maximal degree n, with adjacent edges {e1, ..., en}. Consider the set of connected components 
{C 1, ..., Cn} of the graph � � {v, e1, ..., en}. For all i ∈ {1, ..., n}, let Ci denote the vertex set of C i and let ci := |Ci |. If 
d(Ci) < nci − n for some i ∈ {1, ..., n} then the result follows from the same arguments as in Case (ii) where � is infinite, 
taking S to be Ci ∪ {v} and S ′ to be {v}.

Now consider the case of d(Ci) ≥ nci − n for all i ∈ {1, ..., n}. This greatly limits the possibilities for what � can be. Since 
each C i is a finite tree, at least one vertex in each C i must have degree 1 in �. Hence, for all i ∈ {1, ..., n}, d(Ci) must equal 
either nci − n or nci − (n − 1). What possible finite trees C i and � satisfy this condition?

If n = 3 then the only valid possibility for such a C i is either a single vertex or the unique tree on two vertices, and 
hence the only possibilities for � are exceptional trees as displayed in Fig. 6. If n > 3 then the only valid possibility for such 
a C i is a single vertex, and hence the only possibility for � is the n-star graph (also an exceptional tree displayed in Fig. 6). 
Since all finite trees with n < 3 are quasiregular (they are all subtrees of the 2-regular tree) we may ignore the case n < 3.

(⇐=) Assume � is quasiregular (so it must be n-quasiregular). Let T be any finite subtree of �, with vertex set T , and 
let T ′ be any proper subset of T . Denote l := |T | and l′ := |T ′|. Observe that d(T , T ) = l − 1 and d(T ′, T ) ≥ l′ (since T is a 
tree and l′ < l). Moreover, d(T ) ≥ nl − n (by definition of n-quasiregularity) and d(T ′) ≤ l′n. Summarizing, we have

d(T , T )

d(T )
≤ l − 1

nl − n
= 1

n
= l′

l′n
≤ d(T ′, T )

d(T ′)
and so T is homogeneous.

It remains to check that every possible coalition in each exceptional tree in Fig. 6 is indeed homogeneous. We check this 
for the n-star, and leave it as an easy exercise to the reader to check the remaining exceptional trees.

Let U , with vertex set U , be any subtree of the n-star, where n ≥ 3. If U consists of only a single vertex then it is trivially 
homogeneous, so without loss of generality assume that U contains the unique vertex v of degree n and u ≥ 0 vertices of 
degree 1. Let U ′ be any subset of U . Say U ′ contains u′ ≤ u vertices of degree 1. If v /∈ U ′ then d(U ′, U ) = d(U ′) = u′ and if 
v ∈ U ′ then d(U ′, U ) = d(U , U ) = u and d(U ′) = u′ + n. In either case, we have

d(U , U )

d(U )
= u

u + n
≤ d(U ′, U )

d(U ′)
and so U is homogeneous. �
Proof of Lemma 4. Immediate from discussion in the text. �
Proof of Proposition 5. Let � = (V , E) be a tree such that every finite, connected S ⊆ V is balanced. Let i and j be any 
two vertices in V and let their respective degrees be k1 and k2. Let S be the smallest subtree in � containing both vertices 
i and j. Since S is balanced, we have 1/k1 = d(i, S)/d(i) = d( j, S)/d( j) = 1/k2, therefore k1 = k2 =: n. So � must be an n-regular tree. 
However, by Lemma 4, any finite, connected S ⊆ V , |S| > 2, in an n-regular tree is not balanced. Hence � must be the tree 
on two vertices. �
Proof of Lemma 5. Consider P2 = 1, so ρ2 = 1. In this case, the ensemble (P , m) only includes a single graph, the line 
� = (V , E). By construction, Pm then puts all probability on connected sets S ⊂ V that do not include the two vertices with 
degree 1 at opposite ends of the line �. Co(S) = 1/2 and C K (S) = (m − 1)/(2m). Therefore, Co(S) − C K (S) → 0 as m → ∞ and 
we are done.

For the rest of the proof, assume that P2 < 1, so ρ2 < 1. For given (�, S), denote

L(S) = {i ∈ S : d(i, S) = 1}.
As a first step, we show that for any r0 ∈N ,

lim
m→∞Pm

[ {
(�, S) : |L(S)| < r0

} ]= 0. (A.3)
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To see this, consider any given sequence {S1, . . . , Sk}, k < m, constructed as described in the main body of the text prior to 
the statement of the lemma. Note that L(·) is weakly increasing on such sequences and |L(S1)| = 0, |L(S2)| = 2. It must be 
that |L(Sk)| = r for some r ∈N .

Consider continuations of S1, . . . , Sk to obtain {S1, . . . , Sk, . . . , Sm}, with m − k an even number. Consider {S1, . . . , Sm}
for which |L(Sm)| = r. This implies that |L(St)| = r for all k ≤ t ≤ m. Let m̄ = (k + m)/2. There are two cases to consider.

Case A. There does not exist t , k ≤ t ≤ m̄, i ∈ St , such that i /∈L(St), d(i, St) �= d(i).
For k ≤ t ≤ m̄ − 1, under Case A, vertices in L(St) are the only vertices in St that have any neighbors in � that are 

outside of St . Therefore, St+1 is obtained from adding a neighbor, say j, of some i ∈L(St), to St . Consequently, i /∈ L(St+1)

and j ∈ L(St+1). Furthermore, it must be that d(i) = 2 or otherwise Case A would be contradicted (as i would then have 
more than 1, but fewer than d(i) neighbors).

Consequently, if St+1 = St ∪{ j} and d( j) > 2, then j ∈L(St+1) but St+1 cannot be further extended by adding a neighbor 
of j, as doing so would contradict Case A. As |L(St)| = r on {Sk, . . . , Sm̄}, the addition of j with d( j) > 2 can therefore occur 
at most r times before it becomes impossible to extend St without contradicting either |L(St)| = r or Case A.

As a consequence of the above, the probability of Case A is bounded above by the probability that r or fewer vertices of 
degree strictly greater than 2 are added on {Sk, . . . , Sm̄}. The probability under (P , m) that any vertex added to St , t ≥ 1, 
has degree strictly greater than 2 is (1 − ρ2), so the probability of r or fewer such additions on {Sk, . . . , Sm̄} is

r∑
μ=0

(
m̄ − k

μ

)
(ρ2)

m̄−k−μ(1 − ρ2)
μ,

which approaches zero as m̄ → ∞, which, by definition of m̄, occurs as m → ∞.

Case B. There exists t̃ , k ≤ t̃ ≤ m̄, i ∈ St̃ such that i /∈L(St̃), d(i, St̃) �= d(i).
Consider t̃ ≤ t ≤ m −1. If i ∈ St and a neighbor of i, say j, is chosen so that St+1 = St ∪{ j}, then it must be that d(i, St) �=

d(i). If i /∈ L(St), then L(St+1) = L(St) ∪ { j}, so |L(St+1)| = |L(St)| + 1, contradicting |L(St)| = r for all t = k, . . . , m. So it 
must be that for each t , St+1 = St ∪ { j} for some neighbor j of some i ∈ L(St). As |L(St)| = r, the probability of choosing 
i ∈ L(St) rather than some i /∈ L(St) (which is possible, given Case B) is no greater than r/(r + 1). This must happen at 
t = t̃, . . . , m − 1, which occurs with a probability no greater than

(
r

r + 1

)m−t̃

≤
(

r

r + 1

)m−m̄

=
(

r

r + 1

)m−k
2

,

which approaches zero as m → ∞.
So, from any Sk , |L(Sk)| = r, the probability of |L(Sm)| ≤ r can be made arbitrarily small by increasing m. Consequently, 

for any r0 ∈N , we can make Pm
[ {

(�, S) : |L(S)| < r0
} ]

arbitrarily small by increasing m and we have (A.3).
Consider a given tree � = (V , E), with root vertex i1, and vertex j ∈ U ⊂ V such that j �= i1. It will be shown that the 

probability that L(Sm) = U is independent of d( j). First note that if U includes some l such that the unique path in � from 
l to i1 passes through j, then it is impossible that j ∈ L(Sm) and thus impossible that U =L(Sm). Assuming that this is not 
the case, if we create a new graph by altering the branches of � that emerge from j in any direction other than towards 
i1 while maintaining d( j) ≥ 2, then the probability of L(Sm) = U remains the same. This is because the altered part of 
the graph has no effect on the construction of {S1, . . .} unless and until (i) St is reached such that j ∈ L(St); and (ii) j is 
randomly chosen so that St+1 will be the union of St with some neighbor of j. However, if this occurs, then j /∈ L(St+1), 
regardless of the value of d( j).

In summary, the probability of U = L(S) is independent of d( j) for j ∈ U , j �= i1. That is, knowing that a vertex j is in 
L(S) does not tell us anything more about d( j) than what we already know, that it is chosen according to the distribution 
ρ . In particular, the probability that all vertices in L(S) \ {i1} have degree less than n̂, conditional on L(S) containing at 
least r vertices, is bounded:

Pm
[ {

(�, S) : d( j) < n̂ for all j ∈ L(S)
} ∣∣ |L(S)| ≥ r

]≤
⎛⎝∑

n<n̂

ρn

⎞⎠r−1

, (A.4)

where the bound is constructed by multiplying independent probabilities of r − 1 vertices in L(S) \ {i1} having degree less 
than n̂.

Let n̂ be such that 
∑

n<n̂ ρn < 1. For any given δ > 0, it is possible to choose r̃ large enough such that 
(∑

n<n̂ ρn
)r̃−1

< δ/2. 
Furthermore, (A.3) implies that it is possible to choose m̃ such that Pm̃

[ {
(�, S) : |L(S)| < r̃

} ]
< δ/2. Therefore
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Pm̃
[ {

(�, S) : d( j) ≥ n̂ for some j ∈ L(S)
} ]

(A.5)

≥ Pm̃
[ {

(�, S) : |L(S)| ≥ r̃
} ]︸ ︷︷ ︸

>
(

1− δ
2

)
by choice of m̃

·Pm̃
[ {

(�, S) : d( j) ≥ n̂ for some j ∈ L(S)
} ∣∣ |L(S)| ≥ r̃

]︸ ︷︷ ︸
>
(

1− δ
2

)
by (A.4)

>

(
1 − δ

2

)2

> 1 − δ.

As, for any δ > 0, (A.5) holds for large enough m̃, we have

lim
m→∞Pm

[ {
(�, S) : d( j) ≥ n̂ for some j ∈ L(S)

} ]= 1. (A.6)

If j ∈L(S), d( j) ≥ n̂, then Co(S) ≤ 1/n̂. So, from (A.6),

lim
m→∞Pm

[{
(�, S) : Co(S) ≤ 1

n̂

}]
= 1. (A.7)

Now consider C K (S). By Lemma 1, C K (S) ≤ Co(S). If there exists no maximal n such that Pn > 0, then for any ε > 0, 
we can choose n̂ such that 1/n̂ < ε, so by (A.7),

lim
m→∞Pm

[ {
(�, S) : Co(S) − C K (S) > ε

} ]= 0, (A.8)

proving the lemma.
If there exists maximal n such that Pn > 0, let n̂ take this value. Recall that C K (S) = minS ′⊆S

d(S ′,S)
d(S ′) . If S = S ′ , d(S ′, S) =

m − 1 and d(S) ≤ mn̂. If S ′ ⊆ S , S ′ �= S , then d(S ′, S) ≥ |S ′|, d(S ′) ≤ |S ′|n̂. In either case, d(S ′,S)
d(S ′) ≥ (m−1)

mn̂
. This lower bound 

on C K (S) approaches 1/n̂ as m → ∞, which together with C K (S) ≤ Co(S) (by Lemma 1) and (A.7), implies (A.8) and we are 
done. �
Proof of Proposition 6. Assuming β < 1 + α, let

ε = 1

1 + β
− 1

2 + α
> 0.

If (�, S) is such that S is agency autonomous but not potential autonomous, then by Remarks 2, 1 respectively, Co(S) > 1
1+β

and C K (S) ≤ 1
2+α , so

Co(S) − C K (S) >
1

1 + β
− 1

2 + α
= ε,

but, by Lemma 5, the probability of such an (�, S) pair approaches zero as m → ∞. �
Proof of Lemma 6. If � is complete, then balancedness of all S ⊆ V follows from the argument immediately prior to 
the statement of the Lemma. To prove the reverse, assume that all connected S ⊆ V are balanced. Choose arbitrary i ∈ V . 
� connected implies that there exists j ∈ V such that {i, j} ∈ E . S = {i, j} is connected and d(i, S) = d( j, S) = 1. Balancedness 
of S implies that d(i,S)

d(i) = d( j,S)
d( j) , so we have d(i) = d( j). This argument applies to any pair of vertices that share an edge in 

�, so as � is connected, all vertices in V have the same degree.
For S = {i, j}, the induced subgraph of � on S is complete. For connected S , |S| = m, m ≤ |V |, we show by induction that 

the induced subgraph on S is complete. For given S , |S| = m, choose i0 ∈ S such that T = S \ {i0} is connected. By induction 
on m, it must be that { j, k} ∈ E for all { j, k} ⊆ T , so d( j, T ) = |T | − 1 for all j ∈ T . By definition of T , at least one vertex, say 
i1 ∈ T , is a neighbor of i0, therefore d(i1, S) = |T | = |S| − 1. For all j ∈ S , balancedness of S implies that d( j,S)

d( j) = d(i1,S)
d(i1)

, and 
as all vertices in V have the same degree, d( j) = d(i1) so d( j, S) = d(i1, S) = |S| − 1. Therefore, the induced subgraph of �
on S is complete. As � is connected, this holds for S = V , therefore � is complete. �
Proof of Proposition 7. The condition in Definition 3 can be written as

min
T ⊆S
T ∈	

max
i∈T

πi(σ
B
S ,σ A

V \S) − πi(σ
A

T ,σ B
S\T ,σ A

V \S) ≥ 0.

Substituting payoffs this becomes

min
T ⊆S
T ∈	

max
i∈T

(β − α)d(i, V \ S) + d(i, S) − (1 + β)(d(i, T ) + d(i, V \ S)) ≥ 0,

which rearranges to give the required condition. �
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Proof of Proposition 8. Consider β ≤ 1 + α. Let S ′ , S ′′ be immune to contagion. Let S = S ′ ∪ S ′′ . Let T ⊆ S attain the 
minimum in the definition of CoCo(S, α, β). Assume, without loss of generality, that T ′ := S ′ ∩ T is nonempty. Then

CoCo(S,α,β) = max
i∈T

d(i, S)

d(i)
− 1 + β

2 + α

d(i, T )

d(i)
≥︸︷︷︸

by T ′⊆T

max
i∈T ′

d(i, S)

d(i)
− 1 + β

2 + α

d(i, T )

d(i)

= max
i∈T ′

d(i, S ′)
d(i)

− 1 + β

2 + α

d(i, T ′)
d(i)

+ d(i, S \ S ′)
d(i)

− 1 + β

2 + α

d(i, T \ T ′)
d(i)︸ ︷︷ ︸

≥0 by β≤1+α and T \T ′⊆S\S ′

≥ max
i∈T ′

d(i, S ′)
d(i)

− 1 + β

2 + α

d(i, T ′)
d(i)

≥︸︷︷︸
by defn

of Coco(.)

CoCo(S ′,α,β) ≥︸︷︷︸
by immunity of S ′
and Proposition 7

1 + α

2 + α
,

so by Proposition 7, S = S ′ ∪ S ′′ is immune to contagion.
Now consider β > 1 + α. Let � = (V , E) contain two cliques S ′ and S ′′ , each on k + 1 vertices. Let each vertex in S ′ ∪ S ′′

have degree k + l and let there be precisely one edge e = {i, j} joining S ′ and S ′′ (that is, d(S ′, S ′′) = 1). Assume that the 
restriction of the set 	 of feasible coalitions to S ′ ∪ S ′′ is the union of {e} with the set of singletons. Then

CoCo(S ′,α,β) =︸︷︷︸
as all feasible
coalitions in S
are singletons

Co(S ′) =︸︷︷︸
by defn
of Co(.)

k

k + l
.

Similarly, we have that CoCo(S ′′, α, β) = k/(k + l). Also

CoCo(S ′ ∪ S ′′,α,β) ≤︸︷︷︸
by defn

of Coco(.)

d(i, S ′ ∪ S ′′)
d(i)

− 1 + β

2 + α

d(i, e)

d(i)

= k + 1

k + l
− 1 + β

2 + α

1

k + l
<︸︷︷︸

by β>1+α

k

k + l
.

As α is rational, we can choose k and l such that (1 + α)/(2 + α) = k/(k + l). Consequently,

CoCo(S ′ ∪ S ′′,α,β) <
1 + α

2 + α
= CoCo(S ′,α,β) = CoCo(S ′′,α,β),

and Proposition 7 implies that S ′ and S ′′ are immune to contagion but S ′ ∪ S ′′ is not. �
Appendix B. Zachary’s Karate Club

Here we consider our ideas in relation to Zachary’s Karate Club - a social network famous in the literature. The original 
paper by Zachary (1977) followed the members of a Karate Club in the early 1970s that split into two resulting subclubs, a 
new club led by the instructor (member 1) and the remnants of the old club led by the administrator (member 34).

We shall first model the observed split in Zachary’s Karate Club as a single coalitional move, using the theory of the 
current paper to find the values of β for which this move is rational. Next, we consider a family of dynamic updating 
processes in which a coalition first breaks away from the club, following which individual members sequentially choose to 
join them. We show that this allows a coalitional move supported by a lower value of β than in the previous case and 
compute the predicted final split for all values of α.

Let V = {1, 2, ..., 34} be the set of 34 members of Zachary’s Karate Club. Let E be the set of relationships between the 
members and let � = (V , E) be the associated graph. Let strategy A (resp. B) refer to joining the subclub led by member 1
(resp. 34). Before the split, all members of V play strategy B . Let S be the subset of V consisting of the members that were 
observed to play strategy A after the split. According to Zachary (1977),

S = {1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22}.
We first consider the move by S from B to A as a single switch by a coalition comprising every member of S . The 

area of S is d(S, S) = 33. The perimeter of S is d(S, V \ S) = 10. At the initial strategy profile, all players play B , so there 
is no contaged perimeter and thus the perimeter equals the uncontaged perimeter. Consequently, the switch by S strictly 
increases the sum of payoffs of its players if and only if β > 5/33. Similarly, this switch is strictly potential increasing if and 
only if α > 10/33. The least integrated member of S is member 3, so
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Co(S) = min
i∈S

d(i, S)

d(i)
= d(3, S)

d(3)
= 5

10
= 1

2
. (B.1)

By (B.1) and Remark 2, S is agency autonomous if and only if β > 1. That is, the coalitional move by S strictly increases the 
payoff of every member of S if and only if β > 1.

Next we consider the possibility that the move by S from B to A comprised a switch of strategy by some coalition 
S0 ⊂ S , followed by switches by individual players in S \ S0. Ideally the coalition S0 would find it easier to switch from B
to A than S would. That is, we would like S0 to be agency autonomous for some β < 1. For this to be the case, we require 
Co(S0) > 1/2. We further assume that S0 ⊃ V 0, where V 0 is the set of all players v ∈ V that satisfy the following property: 
every path in � between members v and 34 passes through member 1. Observe that V 0 = {1, 5, 6, 7, 11, 12, 17}.

Consider a dynamic process which begins with S0 moving as a coalition from B to A such that the payoff of every player 
in S0 strictly increases. This is followed by a sequence of individuals vi ∈ V for i = 1, ..., n each moving from B to A and 
strictly increasing their respective payoffs. The process terminates when there does not exist any individual playing B who 
could strictly increase their payoff by moving to A. If the aforementioned conditions are satisfied, we say that the sequence 
terminates at Ŝ(S0, α) = S0 ∪ {v1, ..., vn}. Observe that Ŝ(S0, α) is independent of β and the ordering of the sequence of vi . 
In general, different choices of S0 will lead to different Ŝ(S0, α). However, it turns out that all S0 satisfying our conditions 
above lead to the same Ŝ(S0, α) for all values of α. Hence, without loss of generality we will assume that

S0 := {1,2,4,5,6,7,8,11,12,14,17,18},
for which Co(S0) = 5/9. Hence, S0 is agency autonomous if and only if β > 4/5. Furthermore, the move is potential increasing 
if and only if α > 15/22. Note that although the initial switch by S0 will not necessarily increase potential, every individual 
switch on the sequence v1, ..., vn will increase potential. This is because, by definition of the potential function (2.2), an 
individual move is payoff increasing if and only if it is potential increasing.

Sequences obtained by this process are

S0,13,20,22,3,10 if 0 < α ≤ 1/2

S0,13,20,22,3,10,9,31 if 1/2 < α ≤ 1

S0,13,20,22,3,10,9,31,29,34, . . . if α > 1

and so we obtain

Ŝ(S0,α) =

⎧⎪⎨⎪⎩
S0 ∪ {13,20,22,3,10} if 0 < α ≤ 1/2

S0 ∪ {13,20,22,3,10,9,31} if 1/2 < α ≤ 1

V if α > 1

as the subclub of V that splits from the original club. The prediction Ŝ(S0, α) for 0 < α ≤ 1/2 differs from the observed 
subclub S only by the presence of member 10. Member 10 has only two neighbors in �, namely 3 and 34, hence a possible 
explanation for the absence of 10 in S could be that he had a stronger relationship with 34 that he had with 3. Referring 
to the weighted version of the network given on page 462 of Zachary (1977), this indeed does seem to be the case.
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