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Abstract. Recently, there has been a revival of interest in cyclic decomposi-

tions of stochastic dynamics. These decompositions consider the behavior of
dynamics over the short, medium and long run, aggregating cycles of behav-

ior into progressively larger cycles, eventually encompassing the entire state

space. We show that these decompositions are equivalent to the aggregative
stage of Edmonds’ algorithm and that this equivalence can be used to recover

well-known results in the literature.

1. Introduction. It is known that, under a variety of behavioral dynamics, includ-
ing variants of best response dynamics, behavior in a population can take a long
time to converge to equilibrium [13].1 This is not universal, and indeed it has been
shown that in several situations convergence is relatively rapid. These situations
include specific interaction structures [13, 14, 32], processes with various forms of
inertia [27, 4], matching problems [26], and specific payoff parameters under both
individualistic [3] and coalitional [25] dynamics.

Of course, in other settings, rapid convergence may fail to occur. In such cases,
the dynamics of behavior in the short and medium run become important. Recently,
some economists have turned their attention to studying such behavior. In partic-
ular, [10, 19] consider the cyclic decomposition approach of [16]. This approach
describes short run behavior as cycles (of which a single absorbing state is a special
case) that can be combined into larger cycles that describe medium run behavior.
These cycles can in turn be combined into cycles that describe long run behavior.

In the current paper, we show that these cyclic decompositions are equivalent to
the aggregative stage of the famous Chiu-Liu-Edmond’s (CLE) algorithm [9, 12].
The CLE algorithm solves (in polynomial time) the problem of finding minimal
(or maximal) spanning trees of weighted directed graphs. When the vertices of a
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in population size. The equilibria considered in such models tend to be some subset of Nash

equilibria with good stability properties.
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graph correspond to states in a Markov chain and the edge weights measure tran-
sition probabilities between these states, solutions to this problem predict long run
behavior [16], a connection that was later introduced to economics [31, 18] and ap-
plied to many different economic problems (see for an overview [29, 23]). Our result
further illuminates this connection: just as long run behavior corresponds to the
solutions of minimum cost spanning tree problems, short and medium run behavior
corresponds to the algorithm that is commonly used to solve such problems.

The usefulness of our result is immediately apparent. Many implementations of
the CLE algorithm exist. Applying such code to a dynamic process such as those
considered here, the interim iterations of the algorithm describe the short and, sub-
sequently, medium run behavior of the process, with the final output describing long
run behavior. In fact, the disaggregative stage of the CLE algorithm that gives min-
imal spanning trees can also be shown to give long run stable states. Hence, these
two concepts are equivalent and the minimal spanning tree characterization of long
run stability can be regarded as a direct implication of the CLE algorithm. Fur-
thermore, the disaggregation of cyclic decompositions leads to a natural structure
on the cycles, previously noted by [7] for the particular cyclic decompositions con-
sidered in [16]. This structure permits precise estimation of (the order of magnitude
of) probability flows out of cycles and, consequently, the stationary distribution of
the process.

The paper is organized as follows. Section 2 gives the model, definitions and
some preliminary results. Section 3 contains the main analysis and results. All
proofs are given in the Appendix.

2. Model.

2.1. Primitives. Let {P η}η, η ≥ 0 be a parameterized collection of Markov tran-
sition matrices on the finite state space X . That is, for x, y ∈ X , P ηxy denotes the
probability of a transition from state x to state y at parameter value η. Assume
that the collection is weakly regular [29]. That is, P η is continuous in η, the process
is irreducible for strictly positive η, and if, for some x, y 6= x, P 0

xy = 0 and P η̂xy > 0
for some η̂ > 0, then {P ηxy}η satisfies

P ηxy = exp

(
−1

η

(
k + o(1)

))
for some k ≥ 0, (1)

where o(1) represents a term that approaches zero as η approaches zero.
The class of weakly regular processes includes most processes commonly found

in the literature, including best response with uniform mutations [18, 31], logit
dynamics [5, 1], probit dynamics [20, 11], skew-symmetric dynamics [6], payoff-
based dynamics [28], coalitional dynamics [22], network formation dynamics [17],
matching dynamics [26, 21] imitation dynamics [30, 2] and model-selection rules [8],
as well as combinations of all of the above [24].

2.2. Composite states. For η > 0, irreducibility of the process implies the ex-
istence of a unique invariant probability distribution, µη. Assume that the limit
µ0 = limη→0 µ

η exists.2 A set of states α ⊆ X shall be referred to as a composite.

2In general, this limit need not exist. However, existence is guaranteed for the more restrictive
class of regular Markov chains (see definition following Theorem 3.4 later in the paper).
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Let µηα denote the mass placed on α by µη. If µ0
{x} > 0, we say that x is stochasti-

cally stable [15]. For η > 0, we denote the share of the invariant probability mass
on composite α that flows each period to another composite β by P̄ ηαβ . That is,

P̄ ηαβ =
1

µηα

∑

x∈α
y∈β

µη{x}P
η
xy. (2)

Note that when α and β are singleton sets, α = {x} and β = {y}, we have that
P̄ ηαβ = P ηxy.

We define a cost function

C(·, ·) : (Powerset(X ) \ {∅})× (Powerset(X ) \ {∅})→ R+ ∪ {∞}
that will measure the order of magnitude of probability flows between composites.

If P̄ η̂αβ > 0 for some η̂ > 0, then define

C(α, β) = lim
η→0
−η log P̄ ηαβ (3)

and if P̄ ηαβ = 0 for all η, then let C(α, β) = ∞. Cost functions measure the order
of magnitude of transition probabilities for low values of η. Transitions with a high
cost are less likely than transitions with a low cost. Similarly define the stationary
distribution decay rate as

rα = lim
η→0
−η logµηα, (4)

which measures the order of magnitude of invariant probabilities for low values of
η.

2.3. Cycles. For a given partition P` of X with at least two elements, define a least
cost transition correspondence σ` : P` ⇒ P` and a function C that gives the cost of
such least cost transitions. For each composite α ∈ P`, we define

σ`(α) = argmin
β∈P`\{α}

C(α, β) and C(α) = min
β∈P`\{α}

C(α, β). (5)

Note that there is no ` subscript on C. This is because the quantity C(α) will prove
to be independent of the partition structure of X \ α.

A cycle in P` is a set Γ` ⊆ P` such that Γ` =
⋃m̄
m=0{αm} for some sequence

α0, . . . , αm̄ that satisfies α1 ∈ σ`(α0), α2 ∈ σ`(α1), . . . , α0 ∈ σ`(αm̄). Note that the
sequence α0, . . . , αm̄ may contain repeated elements. Let Γ` be the set of all cycles
in P`.

Lemma 2.1. If αm, αn are elements of some cycle Γ` in P`, then

rαm + C(αm) = rαn + C(αn).

To see the intuition behind Lemma 2.1, consider a cycle with an associated
sequence α0, . . . , αm̄. At a stationary distribution, (i) the flow of probability from
α0 to α1 cannot be greater than the total flow of probability out of α1; (ii) the order
of magnitude of the total flow from α1 equals the order of magnitude of the largest
flows from α1, one of which is to α2. Therefore, the order of magnitude of the total
flow from α0 to α1 is no greater than the order of magnitude of the total flow from
α1 to α2. Writing in terms of decay rates, recalling that larger decay rates imply a
smaller order of magnitude, and iterating the above argument, we have

rα0 + C(α0) ≥ rα1 + C(α1) ≥ . . . ≥ rαm̄ + C(αm̄) ≥ rα0 + C(α0),
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α β

γ

δ

ε

Γl =

{
{α, β}, {β, γ}, {δ, ε}, {α, β, γ}

}

ΓC
l =

{
{δ, ε}

}

ΓS
l =

{
{α, β}, {β, γ}, {δ, ε}

}

Figure 1. Cycles. For given least cost correspondence, the set
of cycles, closed cycles and simple cycles.

which gives the result. Hence the probability flows around any given cycle in P` are
all of the same order of magnitude, even if there are many such cycles with possibly
shared elements.

2.4. Cyclic decompositions. A nested sequence of partitions P0, . . . ,PL, P0 =⋃
x∈X {{x}} and PL = {X }, is a cyclic decomposition if, for all α /∈ P`, α ∈ P`+1,

we have that α is the union of the elements of some cycle Γ` in P`. We say that
Γ` is consolidated to give α. If we define the birthday of composite α as d(α) =
min{` : α ∈ P`}, and let Π(α) = {π ∈ Pd(α)−1 : π ⊂ α} be the set of pieces of α,
meaning the composites merged to form α on its birthday, then for all α ∈ P`,
` ≥ 1, |α| ≥ 2, we have that Π(α) = Γd(α)−1 for some Γd(α)−1 ∈ Γd(α)−1.

A cycle Γ` in P` is closed if it is closed under σ` in that σ`(Γ`) ⊆ Γ` (see Figure
1). Note that any two closed cycles must be disjoint. Let ΓC` be the set of closed
cycles in P`.
Definition. An FW decomposition is a cyclic decomposition PFW

0 , . . . ,PFW
L such

that, for ` = 0, . . . , L− 1, every cycle in ΓC` is consolidated to give PFW
`+1 .

Lemma 2.2. An FW decomposition exists and is unique.

These decompositions are those considered in [16] and in later simplifications and
extensions of their analysis [7, 10, 19].

A cycle P` is simple if it satisfies the definition of a cycle for some sequence
α0, . . . , αm with no repeated elements (see Figure 1). Let ΓS` be the set of simple
cycles in P`. [[16], p.180] effectively assume that σ`(·) is always a singleton. Under
this assumption, every cycle is both closed and simple. This assumption is not made
in [7, 10, 19]. Note that in models with uniform mutations such as those of [18] and
[31] it is rarely the case that σ0(·) is a singleton.

Definition. A CLE decomposition is a cyclic decomposition PEd
0 , . . . ,PEd

L such
that, for ` = 0, . . . , L− 1, precisely one cycle Γ` ∈ ΓS` is consolidated to give PEd

`+1.

Lemma 2.3. A CLE decomposition exists.

A CLE decomposition consolidates one simple cycle at each stage. The reason we
call this a CLE decomposition is that we will show that such a decomposition is
identical to the steps followed by the famous Chu-Liu/Edmonds’ Algorithm [12, 9].

3. Analysis. Take a cyclic decomposition P0, . . . ,PL. At any value of η, the prob-
ability mass on any composite α ∈ P` under the invariant measure must be dis-
tributed amongst its pieces. That is, µηα =

∑
αm∈Π(α) µ

η
αm . This implies the follow-

ing relationship in the limit as η → 0.
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Lemma 3.1. If α ∈ P`, |α| > 1, then rα = minαm∈Π(α) rαm .

Using Lemmas 2.1 and 3.1, we can show the relationship between the cost function
on composites in P` and the cost function on composites in P`−1.

Lemma 3.2. If ω, α ∈ P`, d(ω) < `, d(α) = `, Π(α) = {α0, . . . , αm̄}, then

C(ω, α) = min
αm∈Π(α)

C(ω, αm), (6)

C(α, ω) = min
αm∈Π(α)

(
max

αn∈Π(α)
C (αn)− C (αm) + C(αm, ω)

)
, (7)

This shows that when building a cyclic decomposition, we can ignore raw transition
probabilities except at the first step when we calculate the values of the cost function
on P0.

The intuition for (6) is that the order of magnitude of the probability flow from
ω to α equals the order of magnitude of the largest probability flow from ω to any
of the pieces of α.

The intuition for (7) is more subtle. Consider any αm ∈ Π(α). Lemma 3.1
implies that the order of magnitude of the probability mass on αm as a proportion
of the probability mass on α is given by rαm −minαn∈Π(α) rαn . By Lemma 2.1, this
quantity equals maxαn∈Π(α) C (αn) − C (αm), the first two terms of (7). The final
term in (7) gives the share of the probability mass on αm that flows to ω. The sum
of the three terms then gives the order of magnitude of the share of the probability
mass on α that flows to ω from αm. Considering all possible αm ∈ Π(α), we obtain
(7).

Note that (6) and (7) do not directly tell us the value for C(α, β) when α and β are
both newly created composites, d(α) = d(β) = `. However, we show in Lemma A.2
in Appendix A that if Π(α) and Π(β) are cycles and one of the cycles is consolidated,
then the other cycle remains a cycle in the new partition and can be consolidated
at the next step. Therefore, C(α, β) is given by applying (6) and (7) consecutively.
Using this ability to consider decompositions as sequential consolidations of a single
cycle at each step, we obtain the following theorem.

Theorem 3.3. For any given cyclic decomposition P0, . . . ,PL∗ , there exists a CLE
decomposition PEd

0 , . . . ,PEd
L of which P0, . . . ,PL∗ is a subsequence.

3.1. Edmonds’ Algorithm. Consider a weighted, directed graph on the vertex
set P`. Let the weight of a directed edge from from α to β be given by C(α, β).

Definition. A (directed) spanning tree with root α ∈ P` is an acyclic directed graph
on P` in which every vertex except α has precisely one outgoing edge.

The algorithm of [9] and [12] can be used to find spanning trees that have mini-
mum or maximum sum of edge weights.3 The algorithm has two stages, an aggrega-
tive stage in which simple cycles in the graph are consolidated and a disaggregative
stage in which this consolidation is reversed and a spanning tree constructed. We
shall follow the steps for constructing a spanning tree with a minimum sum of edge
weights.

3The cited papers find spanning arborescences (every vertex except α has precisely one incoming
edge), which is the same problem following a transformation.
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P0 {u}

{v}

{w}

{x}

{y}

{z} Γ0 =

{{
{u}, {v}, {w}

}
,
{
{x}, {y}

}}4

2

2

4

5

2 1

3

4

P1 {u, v, w}

{x}

{y}

{z} Γ1 =

{{
{x}, {y}

}}4

7

2 1

3

4

P2 {u, v, w} {x, y} {z} Γ2 =

{{
{x, y}, {z}

}}5

7

4

4

P3 {u, v, w} {x, y, z} Γ3 =

{{
{u, v, w}, {x, y, z}

}}5

7

P4 {u, v, w, x, y, z}

Figure 2. Aggregation of states in a CLE decomposi-
tion/Edmonds’ algorithm. This diagram illustrates cyclic de-
composition, moving step by step from P0 to P4. The cost func-
tion C(·, ·) is given by edge weights, with missing edges denoting
transitions with infinite cost. The values of C(·, ·) on the ini-
tial partition P0 are assumed. Costs for partitions P`, ` > 0,
are calculated as described in the text. Least cost transitions
are denoted by an underlined cost and a red arrow, so that a
subset of elements in a partition is a cycle if is the vertex set
for a (graphical) simple cycle of such edges in the diagram. At
each step, one simple cycle is consolidated. For example, in mov-
ing from P0 to P1, cycle {{u}, {v}, {w}} ⊂ P0 is consolidated to
form {u, v, w} ∈ P1, with the costs of transitions to and from
{u, v, w} given by expressions (6) and (7) in the text. For example,
C({u, v, w}, {y}) = min{4− 4 +∞, 4− 2 +∞, 4− 2 + 5} = 7.

3.1.1. Aggregation. Start with the complete, weighted, directed graph G0 on PEd
0

that has edge weights given by C({x}, {y}) for each {x}, {y} ∈ PEd
0 . At step `,

` ≥ 1, of the aggregative stage of the algorithm, the graph G`−1 on PEd
`−1 is used to

construct a complete, weighted, directed graph G` on a new partition PEd
` of X .

To do this, the algorithm considers some subgraph Ḡ`−1 of G`−1 on PEd
`−1 that,

for each vertex, includes a single outgoing edge from amongst its outgoing edges
with minimal weight. By construction, Ḡ`−1 must include at least one graphical
simple cycle, a sequence β0, β1, . . . , βn̄ of non-repeated vertices, with edges from βn

to βn+1 for n = 0, . . . , n̄− 1, and an edge from βn̄ to β0.
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One graphical simple cycle is then consolidated to a single vertex and new edge
weights are calculated.4 For ` = 0, as edge weights are given by C(·, ·), graphical
simple cycles clearly correspond to the simple cycles defined earlier in the paper.
Furthermore, the values that the algorithm gives for the new edge weights following
the consolidation of a graphical simple cycle (see, e.g. p.1398 of [9]) are exactly
the values of the cost function given in (6) and (7). Thus, at every stage in the
aggregation, the set of graphical simple cycles in the algorithm corresponds to the
set of simple cycles in a CLE decomposition, and the edge weights calculated by
the algorithm correspond to the cost functions calculated by a CLE decomposition.

So CLE decompositions are the aggregative stage of Edmonds’ algorithm. Theo-
rem 3.3 then tells us that all cyclic decompositions, including FW decompositions,
are reduced form versions of the aggregative stage of Edmonds’ algorithm. An
example of such a decomposition/aggregration is given in Figure 2.

3.1.2. Disaggregation. After the aggregative stage of the algorithm creates a CLE
decomposition PEd

0 , . . . ,PEd
L , the disaggregative stage of the algorithm (illustrated

in Figure 3) proceeds as follows.
Assume we have constructed spanning trees TL, TL−1, . . . , T` on the partitions/vertex

sets PEd
L ,PEd

L−1, . . . ,PEd
` . We construct a graph on PEd

`−1, starting with T` on PEd
` .

Take α` ∈ PEd
` that was consolidated in moving from PEd

`−1 to PEd
` at the aggregative

stage of the algorithm. Recall that PEd
`−1 = PEd

` \ {α`} ∪Π(α`).

(1) Firstly, for any edges in T` that do not include α`, include a corresponding
edge in T`−1 between the same vertices.

(2) Secondly, note that Π(α`), by definition of a CLE decomposition, is a sim-
ple cycle in PEd

`−1. Thus we can write Π(α`) = {α0
`−1, . . . , α

m̄
`−1} for α1

`−1 ∈
σ`−1(α0

`−1), . . . , αm̄`−1 ∈ σ`−1(αm̄−1
`−1 ), α0

`−1 ∈ σ`−1(αm̄`−1). Add corresponding

directed edges to T`−1, that is from α0
`−1 to α1

`−1, . . ., αm̄−1
`−1 to αm̄`−1 and αm̄`−1

to α0
`−1. The vertices Π(α`) and these edges form a graphical simple cycle.

(3) Next, account for edges that were directed to or from α` in T`. Note that any
such edge is associated with some αm`−1 ∈ Π(α`) that solved the minimization
problem in (6) or (7) when Π(α`) was consolidated to make α` at the aggrega-
tive stage of the algorithm. Replace each edge to or from α` in T` with an
edge to or from the appropriate αm`−1 in T`−1.

(4a) If α` was not the root of T`, then some αm`−1 ∈ Π(α`) will now have two
outgoing edges. One of these edges will be to another element of Π(α`).
Delete this edge. The resulting T`−1 is a spanning tree on PEd

`−1.
(4b) If α` is the root of T`, then choose an element of Π(α`) whose outgoing

edge has the largest edge weight. That is, choose an element that solves
maxξ∈Π(α`) C(ξ). Let α∗`−1 ∈ Π(α`) be the chosen element. Delete the outgo-

ing edge from α∗`−1 in T`−1. The resulting T`−1 is a spanning tree on PEd
`−1.

Iterating the above, the algorithm eventually obtains a spanning tree T0 on PEd
0 .

It was shown by [9] and [12] that T0 has minimal sum of edge weights amongst all
spanning trees on PEd

0 .

4This follows [12]. The presentation of [9] consolidates multiple simple cycles at each step.
This creates multiple edges between newly created composites. This is not a problem, however,

as one need only consider the minimum of these edges, which is what is obtained by consecutive
application of (6) and (7).



536 JONATHAN NEWTON AND WILLIAM H. SANDHOLM

Note that if α∗`−1 is the root of T`−1, then T`−2, T`−3, . . . , T0 will all be rooted at
some β ⊆ α∗` . For ξ ∈ Π(α`) such that C(ξ) < C(α∗`−1), we have, by Lemma 2.1,
that rα∗`−1

< rξ. Therefore, µηξ → 0 as η → 0. This logic again applies when α∗`−1

is disaggregated. Continuing in this manner, we obtain the following theorem.

Theorem 3.4. rα = 0 if and only if there exists a spanning tree on P0 with root
{x} ⊆ α that has minimal sum of edge weights amongst all spanning trees on P0.

Readers may recognize this as the tree characterization of stochastically stable
states [16, 31], a result that underpins a vast literature on evolutionary game theory
in economics. The decomposition based proof discussed above is notably transpar-
ent in illustrating the forces that drive this result.

Note that if rα > 0, then µηα → 0 at an exponential rate as η → 0. However,
for rα = 0, it may still be the case that µηα → 0 at a subexponential rate. If we
strengthen the assumption of weakly regular Markov chains and replace expression
(1) by

P ηxy = (axy + o(1)) exp

(
−1

η
k

)
for some axy > 0 and some k > 0, (8)

then we have the class of regular Markov chains [31]. In this case, rα > 0 if and
only if µηα → 0 as η → 0. This last statement about regular Markov chains is
usually proved by direct reference to the classic Markov chain tree theorem (see,
e.g. Lemma 3.1 in [16]). Interestingly, it cannot be proved by a decomposition
argument. As mentioned subsequent to Lemma 3.2, cyclic decompositions jettison
information on probabilities other than the exponential decay costs captured by the
cost function. Specifically, regardless of whether P ηxy is given by (1) or (8), we have
that C({x}, {y}) = k.

3.2. The invariant measure for all states. Take a cyclic decomposition P0, . . . ,PL. As
µη is a probability measure on X , it must be that µηX = 1 for all η. Therefore rX = 0.
If we write αL = X ∈ PL, and let α∗L−1 solve maxξ∈Π(αL) C(ξ), then Lemma 2.1
together with Lemma 3.1 implies that rα∗L−1

= 0. Lemma 2.1 then further implies

that for all αL−1 ∈ Π(αL), we have rαL−1
= C(α∗L−1) − C(αL−1). This logic

continues as the decomposition is disaggregated and we obtain the following5

Theorem 3.5. Given any cyclic decomposition P0, . . . ,PL, let {x} = β0, . . . , βn̄ =
X be the sequence (with no repetitions) of all composites in the decomposition that
have x as an element. Then

r{x} =

n̄∑

n=1

max
ξ∈Π(βn)

C(ξ)− C(βn−1). (9)

Probably the easiest way to understand the intuition behind Theorem 3.5 is
via the tree structure of cyclic decompositions. This tree structure was noted by
[7] for FW decompositions, but naturally applies to all cyclic decompositions. All
this means is that every composite in a decomposition, starting from PL = {X },
branches into its constituent pieces. At each branching in the tree structure, values
of r can be calculated by pairwise comparison of values of C(·).

Consider Figure 4, in which we depict the tree structure for the decomposition
in Figure 2. At the top of Figure 4, we have composite {u, v, w, x, y, z}. As this
includes the entire state space it must be that r{u,v,w,x,y,z} = 0. This composite

5Theorem 3.5 here is equivalent to Theorem 4.2 of [10] and Theorem 10 of [19].
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P4 {u, v, w, x, y, z}

P3 {u, v, w} {x, y, z} Π
(
{u, v, w, x, y, z}

)
=

{
{u, v, w}, {x, y, z}

}5

7

P2 {u, v, w} {x, y} {z} Π
(
{x, y, z}

)
=

{
{x, y}, {z}

}
4

4

P1 {u, v, w}

{x}

{y}

{z} Π
(
{x, y}

)
=

{
{x}, {y}

}
2 1

P0 {u}

{v}

{w}

{x}

{y}

{z} Π
(
{u, v, w}

)
=

{
{u}, {v}, {w}

}4

2

2

Figure 3. Disaggregation of states under Edmonds’ algo-
rithm. This diagram illustrates disaggregation and the construc-
tion of a spanning tree under Edmonds’ algorithm, moving step by
step from P4 to P0. At each step a composite is expanded into the
cycle that formed it during the aggregation phase. For example,
{x, y, z} ∈ P3 is expanded to {{x, y}, {z}} ⊂ P2 and edges from
{x, y} to {z} and from {z} to {x, y} are added. Next, edges to or
from the composite that is expanded are assigned to the elements
of the cycle that solved (6) or (7) when the cycle was consolidated
during the aggregation phase. For example, the edge from {x, y, z}
to {u, v, w} is replaced by an edge from {x, y} to {u, v, w}. Finally,
an edge in the expanded cycle is deleted (denoted by a dotted line
in the diagram). If the expanded composite was not the root of the
tree at the previous step (e.g. {x, y, z} in P3), then the element of
the cycle with an outgoing edge to outside of the cycle (e.g. {x, y}
in {{x, y}, {z}}) has its outgoing edge within the cycle deleted (e.g.
the edge from {x, y} to {z}). If the expanded composite was the
root of the tree at the previous step (e.g. {u, v, w} in P1), then
the element of the cycle with the highest least cost transition (e.g.
{u} in {{u}, {v}, {w}}) has its outgoing edge deleted (e.g. the edge
from {u} to {v}).

is formed of the cycle of two elements {u, v, w} and {x, y, z}. As C({u, v, w}) >
C({x, y, z}), it follows from Lemma 3.1 that 0 = r{u,v,w} < r{x,y,z}. This logic
continues down the diagram. Simply follow the diagram from the top, choosing
the maximum value of C(·) at every step. In the example under consideration, this
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{u, v, w, x, y, z}
r = 0

{u, v, w}
r = 0

{x, y, z}
r = 2

{u}
r = 0

{v}
r = 2

{w}
r = 2

{x, y}
r = 2

{z}
r = 2

{x}
r = 3

{y}
r = 2

7 5

4 2 2 4 4

1 2

Figure 4. The tree structure of decompositions. The tree
structure of the decomposition considered in Figure 2. Edges con-
nect composites to their pieces below them in the diagram. Edge
weights give C(·) for the composite at the lower end of the edge
in question. For each composite α, we give rα which measures the
order of magnitude of the probability placed on α by the invariant
measure. These are calculated using the values of C(·). For exam-
ple, {x, y} has r{x,y} = 2, therefore by Lemma 3.1, one of its pieces
has r = 2 and none have r < 2. As C({x}) = 1 < 2 = C({y}) and
Lemma 2.1 states that C({x}) + r{x} = C({y}) + r{y}, it must be
that r{x} = 3 and r{y} = 2.

procedure implies that {u} is the only composite in P0 for which r = 0, and that
therefore µ0

{u} = 1.

A similar, though less precise, approach that uses pairwise comparison is the
following, that uses a rough lower bound on probability flows into {x} and compares
it to probability flows out of {x}. The result can be proved directly [14] or as a
corollary of Theorem 3.4.

Theorem 3.6. If, for some x, for all y 6= x there exists a sequence of composites
in P0, {y} = β0, . . . , βn̄ = {x}, such that

n̄−1∑

n=0

C(βn, βn+1)−
n̄∑

n=1

C(βn) < 0, (10)

then µ0
{x} = 1.
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The proof takes any spanning tree T y on P0 rooted at {y}, y 6= x, and constructs
a spanning tree T x rooted at {x} by adding edges from βn to βn+1, n = 0, . . . , n̄−1
and deleting existing edges leaving βn, n = 1, . . . , n̄. By (10), T x has a lower sum
of edge weights than T y. Therefore, by Theorem 3.4, it must be that µ0

{y} = 0 for

all y 6= x, and therefore µ0
{x} = 1.

Theorem 3.6 is known as the radius/modified-coradius theorem, following the
terminology of [14]. Specifically, inequality (10) can be written as

n̄−1∑

n=0

C(βn, βn+1)−
n̄−1∑

n=1

C(βn) < C(βn̄). (11)

The right hand side of (11) is the radius of x. This measures probability flows
from x to any other state. The maximum (across y 6= x) minimum (across all
sequences β0, . . . , βn̄) of the first term in the left hand side of (11) is the coradius
of x. Including the second term, we have the modified-coradius of x. These bound
(from below) probability flows from all y 6= x into x. These are not always tight
bounds, as we see in the example in Figure 2, where the modified-coradius of any
given state in {u, v, w} is 7, but C({x, y, z}) = 5, implying that true probability
flows from X \ {u, v, w} to {u, v, w} are significantly higher than the bound given
by the modified-coradius.

4. Concluding remarks. Applications of perturbed dynamics often make state-
ments about short run behavior (approximated by η = 0) and long run behavior
(the stochastically stable states). The connections made in the current paper should
make it easier to also make statements about medium term behavior.

For example, [30] considers Cournot competition between firms that follow a
imitative dynamic with mutations. In the short run, an equilibrium is reached
at which all firms produce identical quantities. In the long run, firms converge
to Walrasian equilibrium. Considering the Markov chain on the set of short run
equilibria, it can be checked that at the first step of the decomposition there is a
single closed cycle and this cycle contains the Walrasian equilibrium. That is, in
the medium run, the process will not get ‘stuck’ in any other cycle, so medium run
behavior is identical to long run behavior.

In contrast, consider players who play a two strategy coordination game against
their neighboring players on a network and update their strategies according to a
perturbed best response dynamic. Considering the long run, global coordination
on the risk dominant strategy is stochastically stable [28]. However, medium run
behavior will involve relatively small, lightly connected parts of the network switch-
ing back and forth between the two strategies, while denser parts of the network
remain playing the same strategy for long periods of time.

It is likely that many further applications are possible, but that is for the future.
This concludes the main body of the paper.

Appendix.

A. Proofs.

Proof of Lemma 2.1. Consider a cycle Γ` =
⋃m̄
m=0{αm}. For 0 ≤ m ≤ m̄ and

letting αm̄+1 = α0, at the invariant measure of the process we must have
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µηαm P̄
η
αmαm+1 ≤

∑

β∈P`\{αm+1}

µηαm+1 P̄
η
αm+1β ≤ µ

η
αm+1 (|P`| − 1) max

β∈P`\{αm+1}
P̄ ηαm+1β

(12)
The left hand side of (12) is the flow of probability from αm to αm+1. The central
term is the flow of probability from αm+1 to all other composites. Applying the
transformation −η log(·) to the left and right hand sides of (12) and taking limits
as η → 0, we obtain

rαm +C(αm, αm+1)︸ ︷︷ ︸
=C(αm)

≥ rαm+1 + min
β∈P`\{αm+1}

C(αm+1, β) = rαm+1 +C(αm+1). (13)

As (13) holds for m = 0, . . . , m̄, we obtain

rα0 + C(α0) ≥ rα1 + C(α1) ≥ . . . ≥ rαm̄ + C(αm̄) ≥ rα0 + C(α0), (14)

so all of the inequalities in (14) can be strengthened to equalities, and we are
done.

Proof of Lemma 2.2. Given a partition P` and least cost correspondence σ`, define
a Markov chain on P` with transition matrix Q given by

Qαβ =

{
1

|σ`(α)| , if β ∈ σ`(α),

0, otherwise.
(15)

By definition of σ`, this Markov chain has no absorbing states. However, as the
state space is finite, it must have a set of recurrent classes. Any such recurrent
class must have at least two elements, otherwise it would be an absorbing state.
Consider one such recurrent class R. To satisfy the definition of a recurrent class,
we require

(I) For all α ∈ R, β /∈ R, we have Qαβ = 0.
(II) For all α, β ∈ R, there exists a finite sequence α = γ0, . . . , γn = β of elements

of R such that Qγmγm+1 > 0 for m = 0, . . . , n− 1.

Condition (II) implies that we can construct a sequence γ0, γ1, . . . , γm̄, γm̄+1 =

γ0 of elements of R such that Qγmγm+1 > 0 for m = 0, . . . , m̄ and R =
⋃m̄
m=0 γ

m.
Conversely, the existence of such a sequence trivially implies (II). Using this obser-
vation and our definition of Qαβ , Conditions (I) and (II) can be rewritten as

(Ia) R is closed under σ`.
(IIa) For all α, β ∈ R, there exists a finite sequence γ0, γ1, . . . , γm̄, γm̄+1 = γ0 of

elements of R such that γm+1 ∈ σ`(γm) for m = 0, . . . , m̄ and R =
⋃m̄
m=0 γ

m.

Conditions (Ia) and (IIa) constitute the definition of R being a closed cycle in P`.
Consequently, any set of states is a recurrent class if and only if it is a closed cycle
in P`.

Therefore, the set of closed cycles of P` is uniquely determined and, conse-
quently, so is P`+1. As P`+1 has strictly fewer elements than P`, starting from
P0 =

⋃
x∈X {{x}}, the partition PL = {X } will be reached in a finite number of

steps.

Proof of Lemma 2.3. Given a partition P` and least cost correspondence σ`, we
know from the proof of Lemma 2.2 that some (closed) cycle Γ` exists. If such a cycle
is simple, then we let ΓS` = Γ`. Consider the case in which Γ` is not simple. Recall

that Γ` =
⋃m̄
m=0{αm} for some sequence α0, . . . , αm̄ that satisfies α1 ∈ σ`(α0), . . . ,
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α0 ∈ σ`(αm̄). Any such sequence must contain repeated elements or else Γ` would
be simple.

Without loss of generality, let αm
′

= αm
′′

be the first repeated element within
such a sequence, so that we have α0, . . . , αm

′
, . . . , αm

′′
, . . . , αm̄. By construction, the

sequence αm
′
, . . . , αm

′′−1 then contains no repeated elements and ΓS` =
⋃m′′−1
m=m′{αm}

satisfies the definition of a simple cycle.
Consolidate ΓS` to obtain P`+1. As P`+1 has strictly fewer elements than P`,

starting from P0 =
⋃
x∈X {{x}}, the partition PL = {X } will be reached in a finite

number of steps.

Lemma A.1. Let A = {α0, . . . , αm} be a finite set of composites. If α =
⋃
αm∈A α

m,
then rα = minαm∈A rαm .

Proof. As α =
⋃
αm∈A α

m, we have

max
αm∈A

µηαm ≤ µηα ≤ |A| max
αm∈A

µηαm . (16)

Applying the transformation −η log(·) and taking limits as η → 0,

min
αm∈A

rαm ≥ rα ≥ min
αm∈A

rαm , (17)

thus proving the lemma.

Proof of Lemma 3.1. As α =
⋃
αm∈Π(α) α

m, Lemma A.1 implies that

rα = minαm∈Π(α) rαm .

Proof of Lemma 3.2. Let Π(α) = {α0, . . . , αm̄}. Consider the inequalities

max
αm∈Π(α)

∑

x∈ω
y∈αm

P ηxy
µη{x}

µηω

︸ ︷︷ ︸
=P̄η

ωαm

≤
∑

x∈ω
y∈α

P ηxy
µη{x}

µηω

︸ ︷︷ ︸
=P̄ηωα

≤ |Π(α)| max
αm∈Π(α)

∑

x∈ω
y∈αm

P ηxy
µη{x}

µηω
.

︸ ︷︷ ︸
=P̄η

ωαm

(18)

Applying the transformation −η log(·) and taking limits as η → 0, expression (18)
becomes

min
αm∈Π(α)

C(ω, αm) ≥ C(ω, α) ≥ min
αm∈Π(α)

C(ω, αm), (19)

thus proving expression (6) in the statement of the lemma.
Now consider the inequalities

max
αm∈Π(α)

∑

x∈αm
y∈ω

P ηxy
µη{x}

µηα

︸ ︷︷ ︸
=
µ
η
αm

µ
η
α
P̄η
αmω

≤
∑

x∈α
y∈ω

P ηxy
µη{x}

µηα

︸ ︷︷ ︸
=P̄ηαω

≤ |Π(α)| max
αm∈Π(α)

∑

x∈αm
y∈ω

P ηxy
µη{x}

µηα
.

︸ ︷︷ ︸
=
µ
η
αm

µ
η
α
P̄η
αmω

(20)

Applying the transformation −η log(·) and taking limits as η → 0, the central term
becomes C(α, ω). As −η log(|Π(α)|) → 0, the left and right term converge to the
same value, which we now compute.

− η log

(
max

αm∈Π(α)

(
µηαm

µηα
P̄ ηαmω

))
= min
αm∈Π(α)

(
−η log

(
µηαm

µηα
P̄ ηαmω

))
(21)

= min
αm∈Π(α)

(
−η logµηαm + η logµηα − η log P̄ ηαmω

)
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Taking limits of (21) as η → 0, we obtain

min
αm∈Π(α)

(rαm − rα + C(αm, ω)) = min
αm∈Π(α)

(
rαm − min

αn∈Π(α)
rαn + C(αm, ω)

)

(22)

= min
αm∈Π(α)

(
−C(αm) + max

αn∈Π(α)
C(αn) + C(αm, ω)

)
,

where the first equality follows from Lemma 3.1 and the second equality from the
implication of Lemma 2.1 that rαm +C(αm) = minαn∈Π(α) rαn +maxαn∈Π(α) C(αn)
for all αm ∈ Π(α). To see that the latter holds, note that as Π(α) is a cycle in P`−1,
Lemma 2.1 states that rαm + C(αm) is constant across all αm ∈ Π(α). Therefore
any αm that minimizes rαm must also maximize C(αm). This proves expression (7)
in the statement of the lemma.

Lemma A.2. If

1. Γ1
k, Γ2

k, Γ3
k are cycles in Pk.

2. Γ1
k = {α0, . . . , αn̄}, Γ2

k = {α0, . . . , αn
′}, n′ ≤ n̄ so that Γ2

k ⊆ Γ1
k.

3. Γ1
k ∩ Γ3

k = ∅.
4. Pk+1 = Pk ∪ {α} \ Γ2

k.

then

(i) Γ3
k is a cycle in Pk+1.

(ii) If Γ1
k 6= Γ2

k, then Γk+1 = {α, αn′+1, . . . , αn̄} is a cycle in Pk+1.

Proof. Consider ω ∈ Pk \ Γ2
k.

By (6), we have that

C(ω, α) = min
n≤n′

C(ω, αn). (23)

Together with the definitions of the least cost correspondence and cycles, this implies
the following two facts.

Fact 1. If αn ∈ σk(ω) for some n ≤ n′, then σk+1(ω) = σk(ω) ∪ {α} \ Γ2
k.

Fact 2. If αn /∈ σk(ω) for all n ≤ n′, then σk+1(ω) = σk(ω).

Now note that by assumptions (2) and (3) of the lemma, every ω ∈ Γ3
k satisfies the

condition that ω ∈ Pk \ Γ2
k. Therefore Facts 1 and 2 apply and σk+1(ω) are such

that Γ3
k remains a cycle in Pk+1. This proves implication (i) of the lemma.

By (7), we have that

C(α, ω) = min
αn∈Π(α)

(
max

αv∈Π(α)
C (αv)− C (αn) + C(αn, ω)

)
(24)

= min
n≤n′

(
max
v≤n′

C (αv)− C (αn) + C(αn, ω)

)
.

By definition of C(·), we have that−C (αn)+C(αn, ω) ≥ 0. Furthermore, −C (αn)+
C(αn, ω) = 0 if and only if ω ∈ σk(αn). As Γ1

k is a cycle in Pk, it must be that
this holds for some αn ∈ Γ2

k and ω = αñ ∈ Γ1
k \ Γ2

k. Furthermore, the term
maxαv∈Π(α) C (αv) in (24) is independent of αn and ω, therefore C(α, ω) attains its

lowest value over all ω ∈ Pk \ Γ2
k if and only if minαn∈Π(α) (−C (αn) + C(αn, ω))

attains its lowest value, which in this case is zero. Therefore,

Fact 3. σk+1(α) = ∪n′n=1σk(αn) \ Γ2
k.
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Consider some sequence of composites that satisfies the definition of Γ1
k being a

cycle in Pk. Replace every composite αn, n ≤ n′ in this sequence with α. Where
consecutive instances of α arise as a consequence, replace these with one instance
of α. Facts 1 and 2 imply that transitions along this new sequence with α as the
destination are least cost transitions in Pk+1. Fact 3 implies that transitions along
this sequence with α as the starting point are least cost transitions in Pk+1. Hence,

Γk+1 = {α, αn′+1, . . . , αn̄} is a cycle in Pk+1.

Proof of Theorem 3.3. The proof proceeds by induction.

Note that PEd
0 = P0 =

⋃
x∈X {{x}}.

Assume that for some k and l, we have a partial CLE decomposition PEd
0 , . . . ,PEd

k

that contains P0, . . . ,P` as a subsequence and has PEd
k = P`. We complete the

induction by extending PEd
0 , . . . ,PEd

k via a sequence PEd
k ,PEd

k+1, . . . ,PEd
k+m = P`+1.

Extending the sequence

We shall use a further induction. Assume that PEd
k has been extended to PEd

k , . . . ,PEd
k′

satisfying the following conditions. Firstly, if α ∈ P` and α ∈ P`+1, then α ∈ PEd
k′ .

Secondly, if α /∈ P` and α ∈ P`+1, then either (i) α ∈ PEd
k′ ; or (ii) There is a cycle

in PEd
k′ that consolidates to α. These conditions are trivially satisfied for k′ = k,

as PEd
k = P`. Further note that if (ii) does not apply to any α, then PEd

k′ = P`+1

and we are done. Otherwise, choose some α such that (ii) holds and extend PEd
k′ as

follows.

By assumption, there is some cycle, Γk′ = {α0, . . . , αn̄} ⊆ PEd
k′ , that consolidates

to α.

Step A

By the same argument as in the proof of Lemma 2.3, there must be some (not nec-

essarily unique) simple cycle ΓSk′ ⊆ Γk′ . Assume, w.l.o.g., that ΓSk′ = {α0, . . . , αn
′}

for some n′ ≤ n̄. Consolidate ΓSk′ to composite β0 to give the partition PEd
k′+1. By

Lemma A.2, excluding Π(α), any other cycles in Pk′ to which (ii) above applies
remain cycles in PEd

k′+1.

If β0 = α then goto End. Else continue to Step B.

Step B

By Lemma A.2, Γk′+1 = {β0, αn
′+1, . . . , αn̄} is a cycle in PEd

k′+1. Repeat Step A,

inputting PEd
k′+1 instead of PEd

k′

End

This completes the inductive step of the second induction (Extending the se-
quence), which completes the inductive step of the first induction.

Proof of Theorem 3.4. Lemma A.1 implies that rα = minx∈α r{x}. Therefore, rα =
0 if and only if there exists x ∈ α such that r{x} = 0. Consider x ∈ α and a CLE

decomposition P0, . . . ,PL. Let {x} = β0, . . . , βn̄ = X be the sequence (with no
repetitions) of all composites in the decomposition that have x as an element. We
consider the disaggregation stage of Edmonds’ algorithm as described in Section
3.1.2, in particular step (4b). This allows us to show that r{x} = 0 implies that {x}
is the root of a minimal spanning tree on P0, whereas r{x} > 0 implies that {x} is
not the root of any minimal spanning tree on P0.
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Consider r{x} = 0. Lemma 3.1 implies that rβn = 0 for n = 0, . . . , n̄. Hence, for

n = 1, . . . , n̄, we have that βn−1 solves minβ∈Π(βn) rβ . Lemma 2.1 then implies that

βn−1 solves maxβ∈Π(βn) C(β). Therefore, if βn, n > 0, d(βn) = ` is a root of T`, then

βn−1 may be chosen to have its outgoing edge deleted when βn is disaggregated.
When this is the case, βn−1 is then a root of T`−1. As this argument applies for
n = n̄, n̄ − 1, . . . , 1, we can thereby obtain T0 that is rooted at {x}. [9] and [12]
proved that T0 has minimum sum of edge weights amongst all spanning trees on
P0.

Now consider r{x} > 0. As rαL = rX = 0, Lemma 3.1 implies that there exists
n > 0 such that rβn−1 > 0 and rβn = 0. Lemma 3.1 further implies that there exists
β∗ ∈ Π(βn) such that rβ∗ = 0. Therefore, βn−1 does not solve minβ∈Π(βn) rβ .

Lemma 2.1 then implies that βn−1 does not solve maxβ∈Π(βn) C(β). Therefore,

if d(βn) = ` and βn is a root of T`, then βn−1 will never be chosen to have its
outgoing edge deleted when βn is disaggregated. Hence βn−1 is never a root of
T`−1. Consequently, no tree T0 with minimum sum of edge weights amongst all
spanning trees on P0 is rooted at {x}.

Proof of Theorem 3.5. For n = 1, . . . , n̄, by Lemma 2.1 we have

rβn−1 + C(βn−1) = min
ξ∈Π(βn)

rξ + max
ξ∈Π(βn)

C(ξ). (25)

Rearranging (25), we obtain

rβn−1 − min
ξ∈Π(βn)

rξ = max
ξ∈Π(βn)

C(ξ)− C(βn−1). (26)

Summing (26) over n = 1, . . . , n̄ and cancelling terms on the left hand side using
Lemma 3.1,

rβ0︸︷︷︸
=r{x} as β0={x}

− min
ξ∈Π(βn̄)

rξ
︸ ︷︷ ︸

=rβn̄ by Lemma 2.1

=0 as βn̄=X

=

n̄∑

n=1

max
ξ∈Π(βn)

C(ξ)− C(βn−1). (27)

Proof of Theorem 3.6. Let x, y, {y} = β0, . . . , βn̄ = {x} be as in the theorem
statement. Assume that µ0

{y} > 0. By Theorem 3.4, there exists a spanning tree T y

on P0 with minimum sum of edge weights that has {y} as its root. Obtain a new
graph T x from T y by deleting the existing outgoing edges from vertices β1, . . . βn̄

and adding edges from βn to βn+1 for n = 0, . . . , n̄ − 1. T x is a spanning tree on
P0 rooted at {x} that, by (10), has lower sum of edge weights than the tree rooted
at {y}. Contradiction.
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