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Consider an undirected, unweighted graph. Each vertex of the graph is associated with
a player. Each player can produce a non-negative real quantity of a public good. Take a
given player i. If the sum of the quantities produced by the neighbors (on the graph) of
player i is at least 1, then the best response of player i is to produce a quantity 0. If the
sum of the quantities produced by the neighbors of player i is X−i < 1, then the best
response of player i is to produce a quantity xi = 1−X−i. When every player produces
a quantity that is a best response, then we have a Nash equilibrium. Note that there will
typically be a continuum of Nash equilibria in such a setting.

Writing x(t) as the vector of quantities produced at time t and Br(x(t)) as the vector
of best responses to x(t), we can write the continuous-time best response dynamics
ẋ(t) = Br(x(t))− x(t). The paper gives a method for showing convergence of x(t) to a
Nash equilibrium as t→∞. The authors note that there are many methods to prove
convergence when equilibria are isolated but not when they are part of a continuum, in
which case methods are scarce and generally difficult to apply.

Note that convergence to Nash equilibrium is contrasted with convergence to the set
of Nash equilibria, which is typically easy to show. However, it is possible that x(t)
might converge to the set of Nash equilibria without ever converging to any specific
member of that set.

To illustrate the method, the paper considers a graph of two players, players 1 and 2,
with an edge between them. The best response of player 1 is 1−x2. The best response
of player 2 is 1− x1. The set of Nash equilibria is thus all x such that x1 + x2 = 1.
Furthermore, the continuous-time best response dynamic gives ẋ1 = ẋ2 = (1−x1−x2).

The behavior of the process close to a given Nash equilibrium is then considered.
Specifically, a comparison is made between the directions in which the dynamic can
move when it is close to x (the direction cone) and the directions in which the dynamic
could move while remaining close to the set of Nash equilibria (the tangent cone).

In this two-player case, by considering ẋ1 = ẋ2 = (1− x1 − x2), we see that the
direction cone is the set of vectors proportional to (1, 1). In contrast, by considering the
set of Nash equilibria, we see that the tangent cone is the set of vectors proportional to
(1,−1). Thus, the dynamic cannot move away from x while remaining close to the set of
Nash equilibria. Therefore, convergence to the set of Nash equilibria implies convergence
to a Nash equilibrium.

The paper uses this method to show convergence for the general case of the problem
(> 2 players, arbitrary graph). This involves further technical difficulties, and finding a
convenient expression for the tangent cone is not always straightforward.

Jonathan Newton
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