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This paper considers a finite set of players N and a characteristic function v that assigns
to each nonempty coalition S ⊆N a bounded set of payoff vectors V (S) ∈ RS+. A state
x is a pair (π(x), u(x)) such that π(x) is a partition of N and for all S ∈ N , uS(x) ∈
V (S). For any pair of states x, y, the effectivity correspondence E(x, y) equals the set of
coalitions that have the power to change the state from x to y. It is assumed that (E.1)
if T ∈ π(x), S ∈ E(x, y) and S ∩T = ∅, then T ∈ π(y) and uT (x) = uT (y). That is, T is
left untouched when S changes the state from x to y. It is further assumed that (E.2)
from a state x, any given coalition S has the power to change the state by breaking itself
apart and arriving at a state y at which each piece of S obtains payoffs in accordance
with the characteristic function.

A state y farsightedly dominates x if there exists x = y0, y1, . . . , ym = y and
S1, . . . , Sm such that Sk ∈ E(yk−1, yk) for k = 1, . . . ,m, and every player in SK ob-
tains a strictly higher payoff at y than he does at yk−1. A set of states F is a farsighted
stable set if no state in F farsightedly dominates another state in F , and any state not
in F is farsightedly dominated by a state in F .

Lemma 1 states that if y farsightedly dominates x, then it is possible to construct
sequences above so that S1, . . . , Sm−1 are pairwise disjoint and

⋃m−1
k=1 S

k ⊆ Sm. This
lemma is false, but can be made to hold [see J. Newton, “Maximality in the farsighted
stable set revisited”, working paper, 2020, doi:10.2139/ssrn.3590816; “Corrigendum to
‘Maximality in the farsighted stable set’”, 2020] under a condition specifying that when
a coalition of players T is broken up by the participation of some of its players in a
coalitional move by S, then the new coalitions and payoffs for the remainder of the
players T \S depend on neither the coalitions and payoffs of players outside of T before
the breakup, nor the coalitions and payoffs of players outside of T \S after the breakup,
nor the identities of players in S who are not members of T .

A history is a finite sequence of states. A negotiation process σ maps each history h
to a state y(h) and a coalition S(h) that implements this change. That is, if x(h) is
that last state in history h, then S(h) ∈ E(x(h), y(h)). A new history is then created
by adding the new state to the old history. A state x is absorbing under σ if whenever
x(h) = x, we have y(h) = x. σ is absorbing if, starting from any history, an absorbing
state is reached. Let xσ(h) denote the absorbing state reached from h. An absorbing
process is coalitionally acceptable if every player in S(h) obtains at least a high payoff
at xσ(h) as he does at x(h). An absorbing process σ is absolutely maximal if there does
not exist h, T , y such that T ∈ E(x(h), y) and every player in T obtains a strictly higher
payoff at xσ(h, y, T ) than they do at xσ(h).

The main theorem of the paper (Theorem 1) states that if we assume two properties on
states and payoffs, then given a farsightedly stable set F , we can construct a coalitionally
acceptable, absolutely maximal process that has F as its set of absorbing states.

Property A states that if there are a, b ∈ F such that player j obtains a strictly higher
payoff at b than at a, then there exists z ∈ F such that j obtains a weakly lower payoff
at z than at a and all other players obtain a weakly higher payoff at z than at b.

Property B states that if a, b ∈ F and all players in T obtain strictly higher payoffs at
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b than at a, then T /∈ π(b).
The remainder of the proof proceeds as follows: Assume a blocking chain from x to

a ∈ F , and another blocking chain from y to b ∈ F , and some set of players T ∈ E(x, y)
that all receive strictly higher payoffs at b than they do at a. By Property B it must be
that y 6= b. Then using Property A and Lemma 1, a coalitionally acceptable process is
constructed so that following a move by T from x to y, the process eventually transits to
a state z such that at least one player j ∈ T is no better off at z than he is at a, and all
other players are at least as well off at z as they are at b. In other words, if j participates
in an attempt to make the process end up at b rather than a, he can be punished and
end up at z. All other players are willing to participate in such a punishment as they
weakly prefer z to b. Jonathan Newton
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