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Consider a roommate problem consisting of a finite set of players N and a ranking
ri:N →N for each i ∈N so that ri(j) is the rank of player j in player i’s ranking. It is
assumed that ri(i) = |N | for all i ∈N . The rankings represent ordinal preferences over
partners, so that ri(j) = 1 means that j is player i’s most preferred partner, ri(j) = 2
means that j is player i’s second most preferred partner, and so on.

The disagreement over player i is ∆i = maxj∈N\i rj(i)−minj∈N\i rj(i). The maximal
disagreement is ∆ = maxi∈N ∆i.

A matching is a function µ:N → N such that µ(µ(i)) = i for all i ∈ N . The partner
of i at matching µ is µ(i). A matching µ is stable if there do not exist two players such
that both would rather be matched to one another than to their partners at µ.

The rank gap of i and j = µ(i) at µ is given by |ri(j)− rj(i)|. The maximal rank gap
at µ is the maximum of this quantity over all i, j ∈N such that j = µ(i).

Theorem 1 of this paper bounds the maximal rank gap at any stable matching in
terms of the maximal disagreement. The proof for n≥ 6 is as follows (the proof for n < 6
is more simple).

Take a given µ and i ∈N . Let µ(i) = j. There are two cases to consider.
Case 1. If ri(j) = rj(i), then the rank gap of i and j is zero.
Case 2. If ri(j) 6= rj(i), then either ri(j) 6= 1 or rj(i) 6= 1. Assume without loss of

generality that ri(j) 6= 1.
Let J ′ be the set of players that i prefers to j. Let j′ ∈ J ′ and let i′ = µ(j′). It must

be that j′ prefers i′ to i or else µ would not be stable. That is, rj′(i
′)< rj′(i); hence

(1) rj′(i
′)− rj′(i)< 0.

We then have

rj(i
′)− rj(i) = rj(i

′)− rj′(i′)︸ ︷︷ ︸
≤∆i′≤∆

+ rj′(i
′)− rj′(i)︸ ︷︷ ︸

<0 by (1)

+ rj′(i)− rj(i)︸ ︷︷ ︸
≤∆i≤∆

< 2∆.

Hence, rj(i
′) ≤ rj(i) + 2∆− 1 so that i′ is among the rj(i) + 2∆− 1 most preferred

partners of player j. This holds for every i′ = µ(j′), j′ ∈ J ′. The set of such players
has size |J ′| = ri(j)− 1. As ∆ > 0, we also have rj(i) ≤ rj(i) + 2∆− 1, so that i is also
among the rj(i)+2∆−1 most preferred partners of player j. Therefore, in total we have
at least ri(j)− 1 + 1 = ri(j) players among the rj(i) + 2∆− 1 most preferred partners
of player j. That is, ri(j)≤ rj(i) + 2∆− 1. This implies |ri(j)− rj(i)| ≤ 2∆− 1. That is,
the rank gap of i and j is no greater than 2∆− 1. This completes the proof.

The authors go on to show the tightness of their bounds by means of some intricately
constructed examples. They also give bounds for average (rather than maximal) rank
gaps in terms of average (rather than maximal) disagreements. Jonathan Newton
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