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Consider the standard matching problem of D. Gale and L. S. Shapley [Amer. Math.
Monthly 69 (1962), no. 1, 9–15; MR1531503]. There is a set of agents N comprising a
finite set of men M and a finite set of women W . A matching µ is a mapping from M ∪
W to M ∪W ∪ {∅} such that for m ∈M , µ(m) ∈W ∪ {∅}; for w ∈W , µ(w) ∈M ∪
{∅}; and µ(m) = w implies µ(w) = m. Each man has a strict preference ordering over
W ∪{∅}. Each woman has a strict preference ordering over M ∪{∅}. The preferences
of the men and women are collected in a preference profile P .

A preference profile P satisfies uniqueness consistency if (i) there is a unique stable
matching µ∗, and (ii) if we consider a restriction of the set of agents to N ′ ⊂ N such
that if x ∈N ′, then µ∗(x) ∈N ′, together with preferences P restricted to N ′ to give P ′,
then the restricted problem also has a unique stable matching.

A preference profile P satisfies the α-condition if there is a stable matching µ∗ and
(i) there exist orderings on M and F respectively such that a woman wi in position i
prefers µ∗(wi) to any man in any position j > i, and (ii) there exist orderings on M and
F respectively such that a man mi in position i prefers µ∗(mi) to any woman in any
position j > i.

Theorem 1 states that the α-condition implies uniqueness consistency. The proof is
that, in both the original problem and the restricted problems described above, the α-
condition implies that the Gale-Shapley algorithm for finding a stable matching chooses
the same matching under the man-proposing variant (which selects the best stable
matching for men) and the woman-proposing variant (which selects the best stable
matching for women). Consequently, the best stable matchings for men and women
respectively are identical. That is, there exists a unique stable matching.

Theorem 2 states that if the worst outcome for any man or woman is to remain
unmatched, then uniqueness consistency implies the α-condition. The proof is by in-
duction on |M | and |W |. Assuming that we have orderings as per the definition of the
α-condition for |M | = nM and |W | = nW , it is shown that these orderings can be ex-
tended for |M |= nM + 1 and |W |= nW . Jonathan Newton
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