

Citations From References: 0 From Reviews: 0

MR4339129 91A43

Teteryatnikova, Mariya (RS-HSE)

Cautious farsighted stability in network formation games with streams of payoffs. (English summary)

Internat. J. Game Theory 50 (2021), no. 4, 829–865.

Consider a set of vertices that represent players. Let \mathbb{G} be the set of simple, undirected graphs on these vertices. A path from graph g to g' is a sequence of graphs in \mathbb{G} , beginning with g and ending at g', such that each graph in the sequence differs from its predecessor by at most one edge. Let \mathbb{P} be the set of all possible paths for all possible g and g'. For a path $P = (g_1, \ldots, g_K)$, define the continuation from k as $P_k = (g_k, \ldots, g_K)$. Let g^m denote a path that consists of m repetitions of g.

Each player/vertex i has a payoff $\pi_i(P) \in \mathbb{R}$ for every path $P \in \mathbb{P}$.

Path $P = (g_1, \ldots, g_K)$ is an *improving path* if, for all $1 \le k \le K - 1$, either (a) or (b) holds.

- (a) There is an edge between some i and j that is present in g_k but not in g_{k+1} . $\pi_i(P_{k+1}) > \pi_i(g_k^{|P_{k+1}|})$ or $\pi_j(P_{k+1}) > \pi_j(g_k^{|P_{k+1}|})$.
- (b) There is an edge between some i and j that is present in g_{k+1} but not in g_k . $\pi_i(P_{k+1}) > \pi_i(g_k^{|P_{k+1}|}) \text{ and } \pi_j(P_{k+1}) \geq \pi_j(g_k^{|P_{k+1}|}).$

Let $P^{I}(g)$ denote the set of all improving paths starting at network g.

Path $P = (g_1, \ldots, g_K)$ is a surely improving path relative to $G \subseteq \mathbb{G}$ if, for all $1 \le k \le K - 1$, either (c) or (d) holds.

- (c) There is an edge between some i and j that is present in g_k but not in g_{k+1} . $\pi_i(\tilde{P}) > \pi_i(g_k^{|\tilde{P}|})$ for any $\tilde{P} \in P^I(g_{k+1})$ ending at a graph in G, or $\pi_j(\tilde{P}) > \pi_j(g_k^{|\tilde{P}|})$ for any $\tilde{P} \in P^I(g_{k+1})$ ending at a graph in G.
- (d) There is an edge between some i and j that is present in g_{k+1} but not in g_k . $\pi_i(\tilde{P}) \geq \pi_i(g_k^{|\tilde{P}|})$ and $\pi_j(\tilde{P}) \geq \pi_j(g_k^{|\tilde{P}|})$, with at least one inequality strict, for any $\tilde{P} \in P^I(g_{k+1})$ ending at a graph in G.

Let $P^{SI}(g,G)$ denote the set of all surely improving paths relative to G that start at network g. By definition $P^{SI}(g,G) \subseteq P^{I}(g)$ for any $G \subseteq \mathbb{G}$.

The definition of a surely improving path is restrictive in that it requires that any player who moves the graph from g_k to g_{k+1} must prefer any improving path starting from g_{k+1} to remaining at g_k . That is, they do not need to be confident that subsequent changes in the graph will follow any specific improving path.

A set $G \subset \mathbb{G}$ is cautious path stable if (1) for all $g' \in \mathbb{G} \setminus G$, there exists $P \in P^{SI}(g', G)$ such that P ends at a graph in G, and (2) for all $G' \subsetneq G$, G' does not satisfy (1). That is, a cautious path stable set G can always be reached from outside of G via a surely improving path, but this is not true for any strict subset of G. The set G is interpreted as a 'cautious' prediction insofar as it is defined using a relation, the existence of a surely improving path, that is quite restrictive.

Proposition 1 shows that a cautious path stable set always exists. The proof proceeds by noting that \mathbb{G} trivially satisfies (1). Any set G' that satisfies (1) either satisfies (2) or not. If not, then take $G'' \subseteq G'$ that satisfies (1). Proceed until obtaining a G that satisfies (2). Note that this must occur, as the sets are strictly decreasing in size and any set with a single element trivially satisfies (2).

The remainder of the paper considers some properties of cautious path stable sets, gives conditions for uniqueness and solves some examples. $Jonathan\ Newton$

 \odot Copyright American Mathematical Society 2022