$$
\text { Citations From References: } 0 \quad \text { From Reviews: } 0
$$

MR4281687 05C57 05C40 05C80
Clemens, Dennis (D-TUHH-IM); Kirsch, Laurin (D-HAMB);
Mogge, Yannick (D-TUHH-IM)
Connector-breaker games on random boards. (English summary)
Electron. J. Combin. 28 (2021), no. 3, Paper No. 3.10, 33 pp.
The $(m: b)$ maker-breaker connectivity game is played on a graph G. First, the maker claims up to m edges of the graph. Following this, the breaker claims up to b edges. The players continue to alternate turns. The maker wins if she manages to claim edges that are a spanning tree of G. Otherwise, the breaker wins.

The ($m: b$) connector-breaker connectivity game is a variant of the maker-breaker game in which the maker needs to choose her edges in such a way that the graph consisting of her claimed edges stays connected throughout the game.

If both players play optimally, then for given m, b, G, either the maker will win or the breaker will win. For a random graph $G \sim G_{n, p}$ in which each edge appears with probability p, there exists a threshold p^{*} such that when $p<p^{*}$, the breaker wins asymptotically (as $n \rightarrow \infty$) almost surely, and when $p>p^{*}$, the maker wins asymptotically almost surely.

In the maker-breaker game there is a close connection between (i) threshold levels of b above which the breaker wins when G is the complete graph, and (ii) the threshold p^{*} for $G \sim G_{n, p}$. Specifically, the thresholds are proportional to $\frac{n}{\log n}$ and $\frac{\log n}{n}$, respectively.

For the ($2: b$) connector-breaker game on the complete graph, thresholds on b are also proportional to $\frac{n}{\log n}$. Thus, it is reasonable to conjecture that for the ($2: 2$) connectorbreaker game with $G \sim G_{n, p}$, the threshold p^{*} would be proportional to $\frac{\log n}{n}$. The main result of the paper, Theorem 1.3, shows that this is not true and that p^{*} is of size $n^{-\frac{2}{3}+o(1)}$.

The proof shows that the maker, if she wishes to reach a vertex x from another vertex r, can do so if the graph contains a good structure, a full binary tree with root r and k levels, such that every leaf of the tree is adjacent to x. As k tends to infinity, the density of this structure tends to $\frac{3}{2}$, hence many such structures appear when $p>n^{-\frac{2}{3}}$, helping maker to win the game. Conversely, when $p<n^{-\frac{2}{3}}$, the lack of good structures helps breaker to win.

References

1. N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, New-York, 2008. MR2437651
2. J. Balogh, R. Martin and A. Pluhár, The diameter game, Random Structures \& Algorithms 35(3) (2009): 369-389, 2009. MR2548519
3. M. Bednarska and T. Łuczak, Biased positional games for which random strategies are nearly optimal, Combinatorica 20 (2000), 477-488. MR1804821
4. B. Bollobás, Random graphs, Academic Press, London, 1985. (1987), 35-38. MR0809996
5. B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), 35-38. MR0905149
6. V. Chvátal and P. Erdős, Biased positional games, Annals of Discrete Mathematics 2 (1978), 221-228. MR0500701
7. D. Clemens and T. Tran, Creating cycles in Walker-Breaker games, Discrete Mathematics, 339(8) (2016), 2113-2126. MR3500141
8. J. Corsten, A. Mond, A. Pokrovskiy, C. Spiegel and T. Szabó, On the Odd Cycle Game and Connected Rules, European Journal of Combinatorics 89 (2020), 103140, 18 pp. MR4101454
9. L. Espig, A. Frieze, M. Krivelevich and W. Pegden, Walker-Breaker games, SIAM Journal on Discrete Mathematics 29(3) (2015), 1476-1485. MR3383310
10. A. Ferber, R. Glebov, M. Krivelevichand A. Naor, Biased games on random boards, Random Structures \& Algorithms 46(4) (2015), 651-676. MR3346461
11. A. Ferber, M. Krivelevich and H. Naves, Generating random graphs in biased Maker-Breaker games, Random Structures \& Algorithms 47(4) (2015), 615-634. MR3418908
12. J. Forcan and M. Mikalački, On the WalkerMaker-WalkerBreaker games, Discrete Applied Mathematics 279 (2020), 69-79. MR4092622
13. J. Forcan and M. Mikalački, Spanning structures in Walker-Breaker games, arXiv:1907. 08436 (2019).
14. H. Gebauer and T. Szabó, Asymptotic random graph intuition for the biased connectivity game, Random Structures \& Algorithms 35 (2009), 431-443. MR2571778
15. D. Hefetz, M. Krivelevich, M. Stojakovič and Tibor Szabó, A sharp threshold for the Hamilton cycle Maker-Breaker game, Random Structures \& Algorithms 34(1) (2009), 112-122. MR2478541
16. D. Hefetz, M. Krivelevich, M. Stojakovič and Tibor Szabó, Positional games, Birkhäuser, Basel, 2014. MR3524719
17. D. Hefetz, M. Mikalački and M. Stojaković, Doubly biased Maker-Breaker Connectivity game, The Electronic Journal of Combinatorics 19(1) (2012), \#P61. MR2916263
18. S. Janson, T. Łuczak and A. Ruciński, Random graphs, Wiley, New York, 2000. MR1782847
19. M. Krivelevich, The critical bias for the Hamiltonicity game is $(1+o(1)) n / \ln n$, Journal of the American Mathematical Society 24 (2011), 125-131. MR2726601
20. A. Lehman, A solution of the Shannon switching game, Journal of the Society for Industrial and Applied Mathematics 12 (1964), 687-725. MR0173250
21. A. London and A. Pluhár, Spanning Tree Game as Prim Would Have Played, Acta Cybernetica 23(3) (2018), 921-927. MR3832589
22. R. Nenadov, A. Steger and M. Stojaković, On the threshold for the Maker-Breaker H-game, Random Structures \& Algorithms 49(3) (2016), 558-578. MR3545827
23. M. Stojakovič and Tibor Szabó, Positional games on random graphs, Random Structures \& Algorithms 26 (2005), 204-223. MR2116582
24. D. B. West, Introduction to Graph Theory, Prentice Hall, 2001. MR1367739

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.
(c) Copyright American Mathematical Society 2022

