MR4585212 91A12
Abe, Takaaki (J-TOKYTE-SEN); Nakada, Satoshi (J-SUT5-SMG)
Core stability of the Shapley value for cooperative games. (English. English summary)
Soc. Choice Welf. 60 (2023), no. 4, 523-543.
This paper provides some characterizations for cooperative games in terms of polyhedral cones. Consider a cooperative game given by a set of players $N=\{1, \ldots, n\}$ and a characteristic function $v: 2^{N} \rightarrow \mathbb{R}, v(\varnothing)=0$. Define

$$
u_{S}^{-}(T)= \begin{cases}-1, & \text { if } T=S \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
u_{S}(T)= \begin{cases}1, & \text { if } S \subseteq T \\ 0, & \text { otherwise }\end{cases}
$$

Let σ be a permutation of N and, for $i \in N$, let ρ_{i}^{σ} be the set of predecessors of i in σ. Let $m c_{i, \sigma}(v)=v\left(\rho_{i}^{\sigma} \cup\{i\}\right)-v\left(\rho_{i}^{\sigma}\right)$. Let Π be the set of all permutations. The Shapley value $S h(v)$ of v is given by

$$
S h_{i}(v)=\frac{1}{n!} \sum_{\sigma \in \Pi} m c_{i, \sigma}(v)
$$

and the Core $C(v)$ by

$$
C(v)=\left\{x \in \mathbb{R}^{n}: \sum_{j \in N} x_{j}=v(N) \text { and } \sum_{j \in S} x_{j} \geq v(S) \text { for all } S \subseteq N\right\}
$$

Theorem 2 of the paper characterizes the set of games with a nonempty core as those expressible as a linear combination

$$
v=\sum_{i \in N} \alpha_{i} u_{\{i\}}+\sum_{\varnothing \neq S \subsetneq N} \alpha_{S}^{-} u_{S}^{-}
$$

for $\left(\alpha_{i}\right)_{i \in N} \in \mathbb{R}^{n}$ and $\left(\alpha_{S}^{-}\right)_{S \subsetneq N} \geq \mathbf{0}$. Furthermore, if $x \in C(v)$, then there exists such a combination with $\alpha_{i}=x_{i}$ for all $i \in N$.

It follows that if $S h(v) \in C(v)$, then the game can be expressed as

$$
v=\sum_{i \in N} S h_{i}(v) u_{\{i\}}+\sum_{\varnothing \neq S \subsetneq N} \alpha_{S}^{-} u_{S}^{-}
$$

Furthermore, by construction,

$$
S h\left(\sum_{\varnothing \neq S \subsetneq N} \alpha_{S}^{-} u_{S}^{-}\right)=0
$$

and as a consequence the second term can be written as a linear combination of a specific type of basic vector. This characterization of games such that $S h(v) \in C(v)$ is Theorem 4 of the paper.

Jonathan Newton

[References]

1. Abe T (2017) Consistency and the core in games with externalities. Internat J Game Theory 47:133-154 MR3767683
2. Abe T (2019) Decomposing a balanced game: a necessary and sufficient condition for the nonemptiness of the core. Econ Lett 176:9-13 MR3892367
3. Abe T, Nakada S (2019) The Weighted-egalitarian Shapley Values. Soc Choice Welf 52(2):197-213 MR3910868
4. Bondareva ON (1963) Some applications of linear programming methods to the theory of cooperative games. Problemi Kibernitiki 10:119-139 MR0167335
5. Casajus A (2011) Differential Marginality, van den Brink Fairness, and the Shapley Value. Theor Decis 71:163-174 MR2818834
6. Casajus A (2014) The Shapley value without efficiency and additivity. Math Soc Sci 68:1-4 MR3165264
7. Casajus A, Huettner F (2013) Null players, solidarity, and the Egalitarian Shapley values. J Math Econ 49:58-61 MR3005748
8. Casajus A, Huettner F (2014) Weakly monotonic solutions for cooperative games. J Econ Theory 154:162-172 MR3277478
9. Casajus A, Yokote K (2017) Weak differential marginality and the Shapley value. J Econ Theory 167:274-284 MR3584911
10. Chun Y (1988) The proportional solution for rights problems. Math Soc Sci 15:231246 MR0947867
11. Chun Y (1991) On the symmetric and weighted Shapley values. Internat J Game Theory 20:183-190 MR1134478
12. Davis M, Maschler M (1965) The Kernel of a cooperative game. Naval Research Log Q 12:223-259 MR0207404
13. Derks JJ (1987) Decomposition of games with non-empty core into veto-controlled simple games. Oper Res Spekt 9(2):81-85 MR0894653
14. Dillenberger D, Sadowski P (2019) Stable behavior and generalized partition. Econ Theor 68(2):285-302 MR3987159
15. Driessen TSH, Funaki Y (1991) Coincidence of and collinearity between game theoretic solutions. OR Spect 13:15-30 MR1097563
16. Edomons J (1970) Submodular Functions, Matroids, and Certain polyhedra. In: Guy R ey al. (Eds)Combinatorial structures and their applications, pp. 69-87, Gordon \& Breach, New York MR0270945
17. Gul F (1989) Bargaining foundations of Shapley value. Econometrica 57:81-95 MR0988247
18. Harsanyi JC (1959) A bargaining model for the cooperative n-person game. In: Contributions to the Theory of Games IV (Annals of Mathematics Studies 40), eds. by A. W. Tucker and D. R. Luce. Princeton: Princeton University Press, 325-355 MR0105320
19. Hart O, Moore J (1990) Property rights and the nature of the firm. J Polit Econ 98:1119-1158
20. Hoffmann M, Sudhölter P (2007) The Shapley value of exact assignment games. Internat J Game Theory 35(4):557-568 MR2304554
21. Ichiishi T (1981) Super-modularity: applications to convex games and to the greedy algorithm for LP. J Econ Theory 25(2):283-286 MR0640200
22. Inarra E, Usategui JM (1993) The Shapley value and average convex games. Internat J Game Theory 22:13-29 MR1229863
23. Izawa Y, Takahashi W (1998) The coalitional rationality of the Shapley value. J Math Anal Appl 220:597-602 MR1614920
24. Joosten R (1996) Dynamics, equilibria, and values. Dissertation, Maastricht University
25. Kalai E, Samet D (1987) On weighted Shapley values. Internat J Game Theory 16:205-222 MR0906387
26. Marinacci M, Montrucchio L (2004) A characterization of the core of convex games through gateaux derivatives. J Econ Theory 116:229-248 MR2061164
27. McQuillin B, Sugden R (2016) Backward induction foundations of the Shapley value. Econometrica 84:2265-2280 MR3580268
28. Moulin H (1985) The separability axiom and equal-sharing methods. J Econ Theory 36:120-148 MR0800738
29. Nowak A, Radzik T (1995) On axiomatizations of the weighted Shapley values. Games Econom Behav 8:389-405 MR1316295
30. Peleg B (1965) An inductive method for constructing minimal balanced collections of finite sets. Naval Res Log Q 12(2):155-162 MR0201198
31. Peleg B (1986) On the reduced game property and its converse. Internat J Game Theory 15:187-200 MR0857013
32. Peleg B, Sudhölter P (2007) Introduction to the theory of cooperative games. Springer, New York MR2364703
33. Pérez-Castrillo D, Wettstein D (2001) Bidding for the surplus: a non-cooperative approach to the Shapley value. J Econ Theory 100:274-294 MR1860036
34. Perry M, Reny PJ (1994) A noncooperative view of coalition formation and the core. Econometrica 62:795-817 MR1284150
35. Shapley L (1953a) Additive and non-additive set functions. Ph.D. Thesis, Department of Mathematics, Princeton University
36. Shapley L (1953b) A Value for n-Person Games. In: Contributions to the Theory of Games II (Annals of Mathematics Studies 28), eds. by H. W. Kuhn and A. W. Tucker. Princeton: Princeton University Press, 307-317 MR0053477
37. Shapley L (1967) On balanced sets and cores. Naval Res Log Q 14:453-460
38. Shapley L (1971) Cores of convex games. Internat J Game Theory 1:11-26 MR0311338
39. Shapley L, Shubik M (1954) A method of evaluating the distribution of power in a committee system. Am Polit Sci Rev 48:787-792 MR0989821
40. Sprumont Y (1990) Population Monotonic allocation schemes for cooperative games with transferable utility. Games Econ Behav 2:378-394 MR1082655
41. Tadenuma K (1992) Reduced games, consistency, and the core. Internat J Game Theory 20:325-334 MR1163933
42. van den Brink R, Funaki Y, Ju Y (2013) Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian shapley values. Soc Choice Welf 40:693-714 MR3018393
43. Young P (1985) Monotonic solutions of cooperative games. Internat J Game Theory 14:65-72 MR0798224
44. Yokote K (2015) Weak addition invariance and axiomatization of the weighted Shapley value. Internat J Game Theory 44:275-293 MR3349048
45. Yokote K, Funaki Y (2018) Monotonicity implies linearity: characterizations of convex combinations of solutions to cooperative games. Soc Choice Welf 49:171-203 MR3656931
46. Yokote K, Kongo T, Funaki Y (2017) The balanced contributions property for equal contributors. Games Econ Behav 108:113-124 MR3818242
47. Yokote K, Funaki Y, Kamijo Y (2016) A new basis and the shapley value. Math Soc Sci 80:21-24 MR3478168
48. Ziegler GM (1995) Lectures on polytopes graduate texts in mathematics, vol 152. Springer, New York MR1311028
Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.
