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This paper considers simple (undirected, unweighted, no multiple edges) graphs with
vertex set V . The vertex set V represents a set of players. Each player has a target
number of other players with whom he would like to share an edge. The target of player
i is denoted ti.

For a given graph, let ei be the degree of player/vertex i. The deviation of player i
is then given by |ti− ei|. The deviation of the graph is the sum of the deviations of all
players. The minimum deviation over all possible graphs is the score. K(min) denotes
the set of graphs that attain this minimum deviation. Note that the lowest possible
score of zero implies that every player attains his target degree.

For any graph, a vertex can be one of three types. A joiner has ei < ti and therefore
wishes to increase his degree. A breaker has ei > ti and therefore wishes to decrease his
degree. A neutral player has ei = ti and therefore wishes to keep his degree the same.

Theorem 3.1 shows that the score equals one if and only if there exists a sequence
(gi)i∈V such that |ti− gi|= 1 for some i and tj = gj for all j 6= i. In words, every set of
targets that gives a score of one is close (in an obvious sense) to a set of targets that
gives a score of zero.

Given the players’ targets, vertices can be categorized into four types: (A) vertices
which are joiners for some graphs in K(min) and breakers for some graphs in K(min);
(J) vertices which are never breakers in K(min); (B) vertices which are never joiners in
K(min); (N) vertices which are always neutral in K(min).

The main theorem of the paper (Theorem 3.3) considers initial targets with score one
and nearby (in the sense of Theorem 3.1) targets with score zero. The types of changes
(for example, adding or subtracting one from the targets of vertices with high or low
targets) required to obtain ti (the score one targets) from gi (the score zero targets) are
then shown to characterize the four classes of vertices defined above.
{For Part I see MR3716169.} Jonathan Newton
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