AMERICAN MATHEMATICAL SOCIETY

MathSciNet
Mathematical Reviews
Previous | Up | Next
Citations From References: $0 \quad$ From Reviews: 0

MR4402568 91A43 05C22 05C57
Li, Yuke (PRC-BJ-SIS) ; Morse, A. Stephen (1-YALE-EE)
Games on signed graphs. (English summary)
Automatica J. IFAC 140 (2022), Paper No. 110243, 12 pp.
The power allocation game is defined as follows. Consider a set of n countries. Each country has a subset of countries which are friends and a (possibly empty) subset of countries which are adversaries. Each country is a friend of itself. If i is a friend (respectively, enemy) of j, then j is a friend (respectively, adversary) of i.
Each country has a given endowment of power. A strategy for a country allocates power to its friends and adversaries. The total allocation by a country equals its endowment. Allocating to a friend is interpreted as helping a friend. Allocating to an adversary is interpreted as supporting the demise of the adversary.
If the total amount of power allocated to helping a country strictly exceeds the power allocated to supporting its demise, the country is said to be safe. If the total amount of power allocated to helping a country is strictly lower than the power allocated to supporting its demise, the country is said to be unsafe. If the amounts are equal, the country is said to be precarious.
It is shown (Theorem 1) that there exists a utility function that satisfies some preference axioms. These axioms are that (1) a strategy profile V is weakly preferred to a strategy profile U if the set of friends who are safe or precarious at V includes the set of friends who are safe or precarious at U, and the set of adversaries who are unsafe or precarious at V includes the set of adversaries who are unsafe or precarious at U; (2) a country is indifferent between two strategies if the outcome (safe/unsafe/precarious) for all of the country's friends and enemies is the same at each of these strategies; (3) V is strictly preferred to U by a country, if the country is safe or precarious under V, but unsafe under U.

Theorem 2 shows that a pure strategy Nash equilibrium of this game exists. The proof proceeds by showing (Lemma 1) that a pure Nash equilibrium exists if the vector of countries' powers can be written as an affine decomposition $p=B d+c$ in which (1) B is an n by q incidence matrix that tracks whether or not each country is party to each of the q adversarial relationships in the game, (2) d is a q by 1 non-negative vector and c is a n by 1 non-negative vector, (3) if countries i and j are adversaries, then it is not the case that c_{i} and c_{j} are both strictly positive. It is then shown that an algorithm can be used to construct such a decomposition.

The paper proceeds to further explore the properties of this game before defining and studying an additional game in which countries choose friendly or adversarial relationships.

Jonathan Newton

References

1. Altafini, C. (2012). Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, 58(4), 935-946. MR3038795
2. Bauso, D., Tembine, H., \& Başar, T. (2016). Opinion dynamics in social networks through mean-field games. SIAM Journal on Control and Optimization, 54(6), 3225-3257. MR3580810
3. Bernheim, B. D., Peleg, B., \& Whinston, M. D. (1987). Coalition-proof Nash
equilibria I. Concepts. Journal of Economic Theory, 42(1), 1-12. MR0888304
4. Bryen, S. D. (2012). The Application of Cybernetic Analysis to The Study of International Politics. Springer Science \& Business Media.
5. Cheng, D., He, F., Qi, H., \& Xu, T. (2015). Modeling, analysis and control of networked evolutionary games. IEEE Transactions on Automatic Control, 60(9), 2402-2415. MR3393130
6. Cranmer, S. J., Menninga, E. J., \& Mucha, P. J. (2015). Kantian fractionalization predicts the conflict propensity of the international system. Proceedings of the National Academy of Sciences, 112(38), 11812-11816.
7. Deutsch, K. W. (1966). The Nerves of Government: Models of Political Communication and Control: With A New Introduction, vol. 90729. Free Press of Glencoe.
8. Deutsch, K. W., \& Singer, J. D. (1964). Multipolar power systems and international stability. World Politics, 16(03), 390-406.
9. Ding, X., Li, H., Lu, J., \& Wang, S. (2021). Optimal strategy estimation of random evolutionary boolean games. IEEE Transactions on Cybernetics. MR4194343
10. Fudenberg, D., \& Tirole, J. (1991). Game Theory. The MIT Press. MR1124618
11. Goyal, S., Vigier, A., \& Dziubinski, M. (2015). Conflict and networks. In The Oxford Handbook of the Economics of Networks.
12. Hall, P. (1935). On representatives of subsets. Journal of the London Mathematical Society, 1(1), 26-30.
13. Harary, F., et al. (1953). On the notion of balance of a signed graph. The Michigan Mathematical Journal, 2(2), 143-146. MR0067468
14. Jackson, M. O., \& Nei, S. (2015). Networks of military alliances, wars, and international trade. Proceedings of the National Academy of Sciences, 112(50), 15277-15284.
15. Li, Y. (2018). A Network Approach to International Relations (Ph.D. Thesis), Yale University.
16. Li, Y., \& Morse, A. (2017a). The countries' relation formation problem: I and II'. In Proceedings of International Federation of Automatic Control World Congress.
17. Li, Y., \& Morse, A. (2017b). Game of power allocation on networks. In Proceedings of American Control Conference.
18. Li, Y., \& Morse, A. S. (2018a). The power allocation game on a network: A paradox. IEEE/CAA Journal of Automatica Sinica. MR3813819
19. Li, Y., \& Morse, A. S. (2018b). The power allocation game on a network: balanced equilibrium. In Proceedings of the American Control Conference.
20. Li, Y., \& Morse, A. S. (2018c). The power allocation game on a network: equilibrium selection. In Proceedings of the 23rd Mathematical Theory of Networks and Systems. MR3813819
21. Li, Y., \& Morse, A. S. (2018d). The power allocation game on a network: subgame perfection. In Proceedings of the IEEE Conference on Decision and Control. MR3813819
22. Li, Y., Morse, A., Liu, J., \& Başar, T. (2017). Countries' survival in networked international environments. In Proceedings of IEEE Conference on Decision and Control.
23. Li, Y., Yue, J., Liu, F., \& Morse, A. S. (2018). The power allocation game on a network: computation issue. In Proceedings of the 7th IFAC Necsys workshop. MR3813819
24. Mearsheimer, J. J. (2001). The Tragedy of Great Power Politics. WW Norton \& Company.
25. Mock, W. B. (2011). Pareto Optimality. Encyclopedia of Global Justice, 808-809.
26. Monderer, D., \& Shapley, L. S. (1996). Potential games. Games and Economic Behavior, 14(1), 124-143. MR1393599
27. Monterio, N. (2014). The Theory of Unipolar Politics. Cambridge University Press.
28. Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research, 2(3), 225-229. MR0459661
29. Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1), 48-49. MR0031701
30. Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 286-295. MR0043432
31. Neumann, J. V., \& Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press. MR0011937
32. Reny, P. J. (1999). On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica, 67(5), 1029-1056. MR1707469
33. Roberson, B. (2011). Allocation games. In Wiley Encyclopedia of Operations Research and Management Science.
34. Stier-Moses, N. E. (1958). Selfish Versus Coordinated Routing in Network Games (Ph.D. Thesis), Massachusetts Institute of Technology.
35. Waltz, K. N. (1979). Theory of International Politics. New York: McGraw-Hill.
36. Whitesitt, J. E. (2012). Boolean Algebra and Its Applications. Courier Corporation. MR1329737
37. Ye, M., Hu, G., Lewis, F. L., \& Xie, L. (2019). A unified strategy for solution seeking in graphical N-coalition noncooperative games. IEEE Transactions on Automatic Control, 64(11), 4645-4652. MR4030788
38. Zhao, G., Wang, Y., \& Li, H. (2016). A matrix approach to the modeling and analysis of networked evolutionary games with time delays. IEEE/CAA Journal of Automatica Sinica, 5(4), 818-826. MR3813824

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.
(c) Copyright American Mathematical Society 2022

