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The power allocation game is defined as follows. Consider a set of n countries. Each
country has a subset of countries which are friends and a (possibly empty) subset
of countries which are adversaries. Each country is a friend of itself. If i is a friend
(respectively, enemy) of j, then j is a friend (respectively, adversary) of i.

Each country has a given endowment of power. A strategy for a country allocates
power to its friends and adversaries. The total allocation by a country equals its
endowment. Allocating to a friend is interpreted as helping a friend. Allocating to an
adversary is interpreted as supporting the demise of the adversary.

If the total amount of power allocated to helping a country strictly exceeds the power
allocated to supporting its demise, the country is said to be safe. If the total amount
of power allocated to helping a country is strictly lower than the power allocated to
supporting its demise, the country is said to be unsafe. If the amounts are equal, the
country is said to be precarious.

It is shown (Theorem 1) that there exists a utility function that satisfies some
preference axioms. These axioms are that (1) a strategy profile V is weakly preferred to
a strategy profile U if the set of friends who are safe or precarious at V includes the set
of friends who are safe or precarious at U , and the set of adversaries who are unsafe or
precarious at V includes the set of adversaries who are unsafe or precarious at U ; (2)
a country is indifferent between two strategies if the outcome (safe/unsafe/precarious)
for all of the country’s friends and enemies is the same at each of these strategies; (3) V
is strictly preferred to U by a country, if the country is safe or precarious under V , but
unsafe under U .

Theorem 2 shows that a pure strategy Nash equilibrium of this game exists. The proof
proceeds by showing (Lemma 1) that a pure Nash equilibrium exists if the vector of
countries’ powers can be written as an affine decomposition p = Bd+ c in which (1) B
is an n by q incidence matrix that tracks whether or not each country is party to each
of the q adversarial relationships in the game, (2) d is a q by 1 non-negative vector and
c is a n by 1 non-negative vector, (3) if countries i and j are adversaries, then it is not
the case that ci and cj are both strictly positive. It is then shown that an algorithm can
be used to construct such a decomposition.

The paper proceeds to further explore the properties of this game before defining
and studying an additional game in which countries choose friendly or adversarial
relationships. Jonathan Newton
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