
Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2023

MR4419556 91A12 91A43

Kukushkin, Nikolai S. (RS-AOS-C)

Ordinal status games on networks. (English. English summary)

J. Math. Econom. 100 (2022), Paper No. 102647, 7 pp.
Consider a finite set of players N , |N | ≥ 2. Each i ∈ N has strategy set Xi, which is
a closed interval in R. The set of strategy profiles is XN =

∏
i∈N Xi. Given a strategy

profile, a status mapping σi:XN → S gives the status s ∈ S of player i from the finite
ordered set S. Utility Ui:Xi × S → R is such that Ui(xi, s) is strictly increasing in S
and single-peaked in xi. That is, for all i ∈N and s ∈ S, there exists x̂si ∈Xi such that
Ui(xi, s) strictly increases in xi when xi ≤ x̂si and strictly decreases when xi ≥ x̂si .

A network status game has the status of player i increasing in the order rank of
his strategy xi with respect to the strategies of the other players. That is, status is
increasing in the number of players j for whom xj ≤ xi. A game is dichotomic if there
are only two statuses, bottom ⊥ and top >, ordered so that > is greater than ⊥. For
such games, for a given player i and strategy profile xN , it is possible to define ξi(xN )
to be the minimum strategy that i could play that would obtain him the status >,
keeping the strategies of the other players fixed. This observation, together with the
monotonicity and single-peakness assumptions, is used to characterize the best response
correspondence for the game (Lemma 4.1).

A very strong equilibrium is a strategy profile from which no coalition of players can
adjust their strategies in such a way that no member’s payoff decreases and at least one
member’s payoff strictly increases. The main results of the paper under review are that
every dichotomic network status game has a very strong equilibrium (Theorem 4.3) and
that if a procedure is followed in which at each step one player adjusts his strategy to
obtain a higher payoff, then the procedure terminates at a Nash equilibrium (Theorem
4.4).

The proof of Theorem 4.3 proceeds constructively. The starting point is the strategy
profile at which all players i ∈N play x̂>i , the optimal choice conditional on status being
>. Following this, players’ strategies are adjusted in the directions in which they would
like to adjust them, prioritizing those who would wish to decrease their strategies over
those who would wish to increase them. This allows exploitation of the complementarity
in optimal strategies to show that the process satisfies a form of monotonicity and
terminates. Given the structure of the problem, it is then fairly straightforward to show
that, from the obtained strategy profile, for any given player to obtain a higher payoff,
another player must change his strategy at a loss to himself. Therefore, a very strong
equilibrium has been obtained. Theorem 4.4 is then proven by showing that cycles do
not occur in this game when players adjust their strategies consecutively to obtain
strictly higher payoffs. Jonathan Newton
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