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The following describes peg solitaire. Consider a connected, undirected graph G =
(V,E). Put pegs in all of the vertices except one. This is the starting state. From this
state, a process is followed. At each step in the process, for some set of three vertices
u, v, w such that u is adjacent to v, v is adjacent to w, u and v have pegs and w has no
peg, move the peg from u to w, removing and discarding the peg at v which has been
“jumped over”. A terminal state is a state such that no more jumps are possible.
A graph G is solvable if there is some starting state such that a terminal state with

only a single peg can be reached. G is freely solvable if from every starting state, a
terminal state with only a single peg can be reached. G is super freely solvable if from
any starting state, for any target vertex, a terminal state with only a single peg at the
target vertex can be reached.
The Cartesian product of two graphs G = (VG, EG) and H = (VH , EH), denoted

G�H, has vertex set VG×VH and edges between any (vG, vH), (v′G, v
′
H) ∈ VG×VH such

that either vG = v′G and there is an edge between vH and v′H in H, or vH = v′H and
there is an edge between vG and v′G in G.
The main theorem of the paper (Theorem 4) is that if G has an even Hamiltonian

path and H is connected, then G�H is solvable. The proof proceeds as follows.
Let Pn be a path with n vertices. Theorem 1 proves, by construction, that Pn�P2,

n≥ 3, is super freely solvable. This result can be extended by induction to all Pm�Pn,
m≥ 3 or n≥ 3 (Theorem 2).
Theorem 3 states that P2�G is freely solvable for any connected G. The proof takes

a spanning tree of G rooted at arbitrary root vertex v0, decomposes the spanning tree
into paths, then considers the Cartesian product of each of these paths with P2, using
Theorem 1 at each step.
Finally, Theorem 4 is proven by considering the Hamiltonian cycle {v1, v2, v3, . . . } in

G two vertices at a time. Assume, without loss of generality, that the starting state has
no peg at (v1, w) for some w ∈H. Theorem 3 can be applied to {v1, v2}�H. It is then
shown that, whichever state is arrived at from applying Theorem 3, it takes two steps
to reach a state such that no pegs remain in {v1, v2}�H and there is a vertex without
a peg in {v3, v4}�H. Iteratively apply Theorem 3 to successive pairs of vertices in the
Hamiltonian cycle. As the cycle is even, this process eventually terminates with one
remaining peg.
Aside from the main theorem, the paper also addresses other interesting topics,

notably showing that the Cartesian product of any two stars is solvable (Theorem 5).
Jonathan Newton
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