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Consider a population comprising a unit mass of agents. These agents are matched in
groups of size p ∈ N to play a p-player symmetric normal form game with strategy set
S = {1, . . . , n} and payoff function U :Sp→ R. The population state x is a vector with
n elements. Element xi denotes the fraction of agents using strategy i ∈ S.

When an agent updates his strategy he will test his current strategy against alternative
strategies. Each strategy that is tested will be played in κ ∈ N independent trials against
random draws of p− 1 other players from the population. The strategy that obtains the
greatest total payoff across all trials is then selected by the agent. If there is a tie, then
some tie-breaking rule is applied.

Let each agent in the population update at Poisson rate 1. Let wi(x) denote the
probability that an agent chosen uniformly at random from the population will select
strategy i when he follows the above procedure. This gives the best experienced payoff
dynamics ẋi = wi(x)−xi, the expected motion of the population from each state.

Let s ∈ S be a strategy such that (s, . . . , s) is a strict symmetric Nash equilibrium
of the game. Let es be the state at which every agent in the population plays s. Let
vsij be the total payoff to i ∈ S when it is matched exclusively to players playing s in
κ− 1 trials, and in the remaining trial matches with (p− 1) players playing s and a
single player playing j ∈ S. These are the important payoffs to consider when almost
everyone in the population plays strategy s, as the probability of matching with two or
more players who do not play s is an order of magnitude lower than the probability of
matching with one player who does not play s.

Let S2 be the set of strategies that obtain the second-best payoff vsts when playing
against s players. That is, S2 = arg maxi 6=s v

s
is.

Strategy j ∈ S is s-stabilizing in J ⊆ S \ {s} if

1. vsij < vsss for all i ∈ J , and
2. if S2 ∩ J 6= ∅, then vssj > vsts.

Intuitively, in a neighborhood of es, if j is s-stabilizing in J , then j does not help
any other strategy in J (including itself) to destabilize es. If a revising agent samples
one player using strategy j 6= s, then condition (1) ensures that if the j-player is met
when testing strategy i, then i does worse than s, so that s is selected over i. Similarly,
condition (2) ensures that if the j-player is met when testing strategy s, then no strategy
in J is selected.

The above suggests a procedure that gives a sufficient condition for stability of es.
If a strategy i is s-stabilizing in S \ {s}, then it does not help any other strategy to
destabilize es. We remove i from the strategy set and consider the reduced problem with
strategy set S \ {i}. If, continuing in this manner, it is possible to remove all strategies
in S \ {s}, then it must be that s is stable under the best experienced payoff dynamics.
This is Proposition 4.2, one of the main results of the paper.

Another main contribution, Proposition 4.1, establishes a result in the other direction,
using a weaker version of s-stabilizing strategies, potentially s-stabilizing strategies. If
some strategy survives the iterated deletion of such strategies, it is shown that es is
unstable. Jonathan Newton
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