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D. Proofs for imitative choice

This section formalizes the arguments of Section 5 of the main manuscript. The proofs of Propositions
2 and 3 proceed by considering weak asymmetry and supermodularity as defined in Appendix B. First, we
define a large class of imitative rules and show conditions under which weak asymmetry holds for the entire
class. Second, we show supermodularity of condition dependent and imitate-the-best rules under these
conditions. Weak asymmetry together with supermodularity then implies asymmetry by Lemma 4.

D.1 Formal definition of imitative rules

Let C ⊆ V be player i’s comparison set. When player i considers changing his strategy, his switching
probability will depend on the current payoffs of the players in his comparison set. Define a function
hC : {S : S⊆C}×RV → R such that, for given S⊆C,

hC(S,x) is


non-decreasing in x j if j ∈ S,

non-increasing in x j if j ∈CrS,

constant in x j if j /∈C.

Using this function, we define a statistic ∆σ
i that measures, at strategy profile σ , how well players in C who

play the same strategy as player i perform relative to players who play the alternative strategy.

∆
σ
i := hC

(
Vσ(i)(σ)∩C , (U j(σ)) j∈V

)
.

∆σ
i is non-decreasing in the payoffs of players in C who play the same strategy as player i, non-increasing

in the payoffs of players in C who play a different strategy to player i, and constant in the payoff of players
outside of C.
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Let an imitative rule for player i be defined as follows. For non-decreasing ϒIm
i : R→ R+ and constant

dσ
i ∈ (0,1), σ ∈ Σ, let

Pε

{i}(σ ,σ) = 1−dσ
i ε

ϒIm
i (∆σ

i ) and Pε

{i}(σ ,σ (i)) = dσ
i ε

ϒIm
i (∆σ

i ),(D.1)

with the convention that 00 = 1 so that Pε

{i} is continuous in ε at ε = 0. Such rules satisfy the restriction on
behavior that the probability that a strategy is chosen is non-decreasing in the payoffs of those who currently
play that strategy.

D.2 Weak asymmetry of imitative rules

For readability, in this section and the remainder of this appendix we write U(σ) := (U j(σ)) j∈V .

Lemma 7. If player i follows an imitative rule, A is PD jk and MM jk for all j ∈C, k, then c{i}(·, ·) is weakly
asymmetric towards A.

Proof of Lemma 7. Let σ , σ̂ be such that VA(σ) =VB(σ̂), σ(i) = A. Note that

Vσ(i)(σ) =VA(σ) =VB(σ̂) =Vσ̂(i)(σ̂).(D.2)

Consider the elements of U(σ),

U j(σ) =

∑k∈VA(σ)r{ j} u jk(A,A)+∑k∈VB(σ)r{ j} u jk(A,B) if σ( j) = A,

∑k∈VA(σ)r{ j} u jk(B,A)+∑k∈VB(σ)r{ j} u jk(B,B) if σ( j) = B,
(D.3)

and the elements of U(σ̂),

U j(σ̂) =



∑k∈VA(σ̂)r{ j} u jk(A,A)+∑k∈VB(σ̂)r{ j} u jk(A,B)

= ∑k∈VB(σ)r{ j} u jk(A,A)+∑k∈VA(σ)r{ j} u jk(A,B) if σ̂( j) = A,

∑k∈VA(σ̂)r{ j} u jk(B,A)+∑k∈VB(σ̂)r{ j} u jk(B,B)

= ∑k∈VB(σ)r{ j} u jk(B,A)+∑k∈VA(σ)r{ j} u jk(B,B) if σ̂( j) = B.

(D.4)

By (D.2), if σ( j) = A, then σ̂( j) = B, and if σ( j) = B, then σ̂( j) = A. Consequently, (D.3) and (D.4),
together with PD jk (u jk(A,A)≥ u jk(B,B)) and MM jk (u jk(A,B)≥ u jk(B,A)) for all j ∈C, k imply

For all j ∈VA(σ)∩C, U j(σ)≥U j(σ̂),(D.5)

For all j ∈VB(σ)∩C, U j(σ)≤U j(σ̂).

Then

∆
σ
i = hC(Vσ(i)(σ)∩C,U(σ)) [by defn of ∆

σ
i ](D.6)

= hC(VA(σ)∩C,U(σ)) [by (D.2)]
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≥ hC(VA(σ)∩C,U(σ̂)) [by (D.5) and defn of hC]

= hC(VB(σ̂)∩C,U(σ̂)) [by (D.2)]

= hC(Vσ̂(i)(σ̂)∩C,U(σ̂)) [by (D.2)]

= ∆
σ̂
i . [by defn of ∆

σ̂
i ]

As ϒIm
i is non-decreasing, (D.6) implies that ϒIm

i (∆σ
i ) ≥ ϒIm

i (∆σ̂
i ) and therefore, by (4.1), c{i}(σ ,σ (i)) ≥

c{i}(σ̂ , σ̂ (i)). That is, c{i}(·, ·) is weakly asymmetric, proving Lemma 7.

D.3 Condition dependence

If C = {i}, then the switching probability for a player i decreases in his current payoff Ui(σ) and is
independent of the payoffs of the other players. This is known as condition dependence.

Lemma 8. If player i follows a condition dependent rule and ui j(B,B)≥ ui j(B,A) for all j, then c{i}(·, ·) is
supermodular towards A.

Proof of Lemma 8. Let σ̂ , σ̃ be such that σ̂(i) = σ̃(i) = B, VA(σ̂) ⊆ VA(σ̃). From (D.3), if uik(B,B) ≥
uik(B,A) for all k 6= i, then Ui(σ̂)≥Ui(σ̃). Then,

∆
σ̂
i = hC(Vσ̂(i)(σ̂)∩C,U(σ̂)) [by defn of ∆

σ̂
i ](D.7)

= hC({i},U(σ̂)) [by condition dependence, C = {i}]

≥ hC({i},U(σ̃)) [by Ui(σ̂)≥Ui(σ̃) and defn of hC]

= hC(Vσ̃(i)(σ̃)∩C,U(σ̃)) [by condition dependence, C = {i}]

= ∆
σ̃
i . [by defn of ∆

σ̃
i ]

As ϒIm
i is non-decreasing, (D.7) implies that ϒIm

i (∆σ̂
i ) ≥ ϒIm

i (∆σ̃
i ) and therefore, by (4.1), c{i}(σ̂ , σ̂ (i)) ≥

c{i}(σ̃ , σ̃ (i)). That is, c{i}(·, ·) is supermodular, proving Lemma 8.

Note that if A is PDi j and MMi j, then ui j(B,B) ≥ ui j(B,A), otherwise (2.2) would be violated. There-
fore, the conditions of Lemma 7 imply the condition of Lemma 8. By Lemma 4, weak asymmetry and
supermodularity suffice for asymmetry.

Proof of Proposition 2. By definition of condition dependence, the process is independent of the payoffs of
players other than i, therefore PDik and MMik for all k 6= i suffices for Lemma 7 to imply that c{i}(·, ·) is
weakly asymmetric. Furthermore, PDik and MMik for all k 6= i, together with (2.2) implies the payoff order-
ing uik(A,A)≥ uik(B,B)≥ uik(A,B)≥ uik(B,A) for all k 6= i. In particular, uik(B,B)≥ uik(B,A). Therefore,
by Lemma 8, c{i}(·, ·) is supermodular. Consequently, by Lemma 4, c{i}(·, ·) is asymmetric.
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D.4 Imitate the best

Consider a player i whose choice probabilities are a function of the highest payoff obtained amongst all
of the players who play A and the highest payoff obtained amongst all of the players who play B. To pick out
the highest payoff obtained by some player in a set of players S, define, for S⊆C, functions MS : RV → R,

MS(x) = max {h}∪{x j : j ∈ S},

where h ∈R is a constant that is independent of S. That is, MS(x) equals the maximum value of x j for j ∈ S,
except in the cases when this maximum is less than h, or S is empty, in which case MS(x) equals h.

If hC is such that hC(S,x) can be written as

hC(S,x) = f (MS(x),MCrS(x)),

for a function f that is non-decreasing in its first argument and non-increasing in its second argument, we
say the rule is an imitate-the-best rule.

Let σ̂ , σ̃ be such that VA(σ̂) ⊆ VA(σ̃) and σ̃(i) = B as in the definition of supermodularity. By similar
arguments to the case of condition dependence, to ensure that the maximum payoff amongst players who
play B is at least as high at σ̂ as at σ̃ , we require that u jk(B,B) ≥ u jk(B,A) for all j,k. Similarly, to
ensure that the maximum payoff amongst players who play A is no higher at σ̂ than at σ̃ , we require that
u jk(A,A)≥ u jk(A,B) for all j,k.

Lemma 9. If player i follows an imitate-the-best rule, u jk(B,B) ≥ u jk(B,A) and u jk(A,A) ≥ u jk(A,B) for
all j ∈C, k, then c{i}(·, ·) is supermodular towards A.

Proof of Lemma 9. Let σ̂ , σ̃ be such that σ̂(i) = σ̃(i) =B, VA(σ̂)⊆VA(σ̃). Together with (D.3), u jk(A,A)≥
u jk(A,B), u jk(B,B)≥ u jk(B,A) for all j ∈C, k, this implies the following inequalities.

For all j ∈VA(σ̂)∩C, U j(σ̂)≤U j(σ̃),(D.8)

For all j ∈VB(σ̃)∩C, U j(σ̂)≥U j(σ̃).

Note that, as VA(σ̂)⊆VA(σ̃) and VB(σ̃)⊆VB(σ̂), (D.8) only relates to j for whom σ̂( j) = σ̃( j). Then,

∆
σ̂
i = hC(Vσ̂(i)(σ̂)∩C,U(σ̂)) [by defn of ∆

σ̂
i ](D.9)

= hC(VB(σ̂)∩C,U(σ̂)) [as σ̂(i) = B]

= f (MVB(σ̂)∩C(σ̂),MVA(σ̂)∩C(σ̂)) [by defn of hC under imitate-the-best]

≥ f (MVB(σ̃)∩C(σ̂),MVA(σ̂)∩C(σ̂)) [as VB(σ̃)⊆VB(σ̂) and f non-decreasing in first argument]

≥ f (MVB(σ̃)∩C(σ̂),MVA(σ̂)∩C(σ̃)) [by (D.8) and f non-increasing in second argument]

≥ f (MVB(σ̃)∩C(σ̂),MVA(σ̃)∩C(σ̃)) [as VA(σ̂)⊆VA(σ̃) and f non-increasing in second argument]

≥ f (MVB(σ̃)∩C(σ̃),MVA(σ̃)∩C(σ̃)) [by (D.8) and f non-decreasing in first argument]
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= hC(VB(σ̃)∩C,U(σ̃)) [by defn of hC under imitate-the-best]

= hC(Vσ̃(i)(σ̃)∩C,U(σ̃)) [as σ̃(i) = B]

= ∆
σ̃
i . [by defn of ∆

σ̃
i ]

As ϒIm
i is non-decreasing, (D.9) implies that ϒIm

i (∆σ̂
i ) ≥ ϒIm

i (∆σ̃
i ) and therefore, by (4.1), c{i}(σ̂ , σ̂ (i)) ≥

c{i}(σ̃ , σ̃ (i)). That is, c{i}(·, ·) is supermodular, proving Lemma 9.

Note that if A is PD jk and MM jk, then u jk(B,B) ≥ u jk(B,A) and u jk(A,A) ≥ u jk(A,B), otherwise (2.2)
would be violated. So, under the conditions of Lemma 7, Lemma 9 also applies. By Lemma 4, weak
asymmetry and supermodularity suffice for asymmetry.

Proof of Proposition 3. PD jk and MM jk for all j ∈ C, k, together with (2.2) implies the payoff ordering
u jk(A,A) ≥ u jk(B,B) ≥ u jk(A,B) ≥ u jk(B,A) for all j ∈ C, k. In particular, u jk(A,A) ≥ u jk(A,B) and
u jk(B,B) ≥ u jk(B,A). Therefore, by Lemmas 7 and 9, c{i}(·, ·) is weakly asymmetric and supermodular,
so by Lemma 4, c{i}(·, ·) is asymmetric.

E. Further examples of payoff-difference based rules

Here give some further examples of behavioral rules that satisfy the definition of payoff-difference based
rules given in Section 4.

E.0.1 Own-payoff based rules

A player i follows an own-payoff based best response rule (Peski, 2010) if, for some strictly increasing
function f : R+→ R+ such that f (0) = 0, we have that

ϒi(x) = f ([xi]+).(E.1)

A special case is f (z) = z, which again gives best response with log-linear deviations. Another special
case is f (z) = z2, in which case we have best response with log-quadratic deviations, which for small
ε approximates the probit choice rule in two strategy environments such as the one in the current paper
(Dokumaci and Sandholm, 2011).

E.0.2 Hippocratic rules

A player i follows a Hippocratic rule if, for some nonnegative vector λ ∈ RV
+,

ϒi(x) = λ · [x]+,(E.2)

so that the probability of player i changing his strategy is decreasing in a weighted sum of payoff losses
when he does so. Unlike the utilitarian rule, any gains in payoff are disregarded. If λi = 1 and λ j = 0 for
j 6= i, this is once again best response with log-linear deviations.
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E.0.3 Best response with switching costs

A player i follows best response with switching costs and uniform deviations (Norman, 2009) if, for
some strictly positive δ > 0,

ϒi(x) = [sgn(xi +δ )]+,(E.3)

so that, for small ε , player i will rarely change his strategy unless his payoff increases by at least δ as a
consequence.

E.0.4 Disjunction and conjunction

Consider rules similar to (E.3) in that ϒi takes values on {0,1}. These ϒi are truth functions that output
a value of 1 if a condition is satisfied and output 0 if it is not satisfied. Another example is

(E.4) ϒ
′
i(x) =

1 if ∑k∈V [sgn(xk)]+ > 3,

0 otherwise.

which corresponds to a process in which, for small ε , player i will rarely change his strategy unless by doing
so he harms no more than three players.

Any two truth functions can be combined through logical conjunction, which corresponds to taking
the minimum of the functions, or logical disjunction, which corresponds to taking the maximum of the
functions. For example, in the case of ϒi given by (E.3) and ϒ′i given by (E.4), the truth function

(E.5) ϒ
∗
i = max{ϒi,ϒ

′
i},

corresponds to a process in which, for small ε , player i rarely changes his strategy unless, as a consequence,
his payoff increases by at least δ and the payoff of no more than three players decreases. Note that ϒ∗i
inherits the non-decreasing property from ϒi, ϒ′i. Furthermore, given any set of primitive truth functions, the
set of truth functions that can be constructed in this way has a lattice structure with a maximal and minimal
element.

F. Coalitional choice

This section formalizes the arguments of Section 6.1 of the main manuscript. From Theorem 3, we
know that asymmetric cS can arise from independent, simultaneous choice by i ∈ S who follow rules with
asymmetric c{i}. In this section, we consider choice by S as a coalition and study a coalitional variant of
payoff-difference based rules. Let

Eσ
S =

(
U j(σ

A
S ,σVrS)−U j(σ

B
S ,σVrS)

)
j∈V ∈ RV .
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That is, starting from profile σ and keeping the strategies of players in V r S constant, (Eσ
S ) j equals the

difference between the payoff of player j when S plays σA
S and the payoff of player j when S plays σB

S .
Let a coalitional payoff-difference based rule for S be a rule that gives the following cost function. For

non-decreasing ϒC
S (·) : RV → R+,

cS(σ ,σ ′) =



0, if σ ′ = σ ,

ϒC
S (−Eσ

S ), if σ ′ = (σA
S ,σVrS) 6= σ ,

ϒC
S (E

σ
S ), if σ ′ = (σB

S ,σVrS) 6= σ ,

∞, otherwise.

(F.1)

That is, greater values of Eσ
S make it more likely that S will choose σA

S and less likely that S will choose σB
S .

Note that if S= {i}, then the cost function (F.1) reduces to the cost function (4.1).1 That is, the individualistic
payoff-difference based models of Section 4 are a special case of the models of this section.

F.1 Examples of coalitional rules

Coalitional versions of the rules in Section 4.2 and Appendix E can be considered. For example, S
follows a Hippocratic rule if, for some nonnegative λ ∈ RV

+,

ϒS(x) = λ · [x]+.(F.2)

Under this rule, the probability of S switching to σA
S depends on a weighted sum of payoff losses relative

to when S switches to strategy σB
S . If λi = 1 for all i ∈ S and λ j = 0 for j /∈ S, then we have a coalitional

logit rule (Sawa, 2014), which can be understood as the rule that arises when each member of S votes for
S to switch to σA

S or σB
S according to the (individualistic) logit choice rule based on payoffs at (σA

S ,σVrS)

and (σB
S ,σVrS), with a switch being implemented only if the vote is unanimously in favor. This rule is

self-regarding in the following sense.

Definition 10. A rule ϒS is self-regarding if ϒS(x) = f (xS) for some non-decreasing function f : RS→ R+.

A class of rules that only makes sense in a non-individualistic setup is the class of coalitional stochastic
stability rules (Newton, 2012), where the likelihood of strategic change by coalition S depends on the size
of S. For example, if, for some constant κ ∈ R++, nonnegative λ ∈ RV

+,

ϒS(x) = κ |S|+[λ · x]+,(F.3)

then we have an augmented utilitarian rule in which the larger a coalition is, the less likely it is to change its
strategies.

1To see this, observe that if S = {i}, then when σ(i) = A, Dσ
i = Eσ

S and when σ(i) = B, Dσ
i =−Eσ

S .

–7–



F.2 Asymmetry of coalitional rules

When it comes to conditions for asymmetry, the differences between coalitional and individualistic
payoff-difference based rules can be concisely explained. First, consider i∈ S, j /∈ S. Note that the strategy of
player i affects the payoff of players i and j in exactly the same way as it would if player i were updating his
strategy as an individual. This creates the need for risk dominance and altruistic risk dominance conditions
similar to those of Proposition 1.

Definition 11. Strategy A is RDiT (risk dominant for i against T ) if

∑
j∈Tr{i}

ui j(A,A)+ui j(A,B)≥ ∑
j∈Tr{i}

ui j(B,A)+ui j(B,B);

ARDS j (altruistically risk dominant for S against j) if

∑
i∈Sr{ j}

u ji(A,A)+u ji(B,A)≥ ∑
i∈Sr{ j}

u ji(A,B)+u ji(B,B).

Our previous risk dominance condition summed over all j 6= i. Now, the relevant summation is over players
outside of S, that is T =V rS in the definition above. ARDS j simply aggregates ARDi j over all i ∈ S.

Second, note that there is an additional consideration present in the coalitional case, which is the payoff
that players in S obtain from interacting with one another. When players in S all play A, interaction between
i, j ∈ S will generate payoff of ui j(A,A) for player i and u ji(A,A) for player j. When players in S all
play B, these payoffs will be ui j(B,B) and u ji(B,B) respectively. Consequently, to ensure that within-
coalition incentives to play A outweigh within-coalition incentives to play B, we require a payoff dominance
condition.

Definition 12. Strategy A is PDiS (payoff dominant for i against S) if

∑
j∈Sr{i}

ui j(A,A)≥ ∑
j∈Sr{i}

ui j(B,B).

Combining the above arguments, we obtain the following proposition.

Proposition 4. If S follows a coalitional payoff-difference based rule, A is RDi(VrS) and PDiS for all i ∈ S,
and

(i) ϒS is self-regarding, or

(ii) A is ARDS j for all j /∈ S,

then cS(·, ·) is asymmetric towards A.

Finally, note that the coalitional rules we have considered in this section involve coalition S comparing
(σA

S ,σVrS) to (σB
S ,σVrS). Another possibility is that a coalition would compare an alternative profile to the

status quo σ . This leads to difficulties similar to violations of supermodularity discussed in Section 5. This
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is not pursued further here, although a detailed study of the intricacies of such rules would certainly be an
interesting topic for further study.

F.3 Proofs for coalitional choice

Lemma 10. Let σ , σ̂ be such that VB(σ) =VA(σ̂). If S follows a coalitional payoff-difference based rule, A
is RDi(VrS) and PDiS for all i ∈ S, and

(i) ϒS is self-regarding, or

(ii) A is ARDS j for all j /∈ S,

then cS(σ ,(σB
S ,σVrS))≥ cS(σ̂ ,(σA

S , σ̂VrS)).

Proof of Lemma 10. If σS = σB
S , then σ̂S = σ̂A

S , so cS(σ ,(σB
S ,σVrS)) = cS(σ̂ ,(σA

S , σ̂VrS)) = 0.

If σS 6= σB
S , then σ̂S 6= σ̂A

S . Consider the elements of Eσ
S ,

(Eσ
S ) j =U j(σ

A
S ,σVrS)−U j(σ

B
S ,σVrS)(F.4)

=



∑i∈S (u ji(A,A)−u ji(A,B)) if j /∈ S, σ( j) = A,

−∑i∈S (u ji(B,B)−u ji(B,A)) if j /∈ S, σ( j) = B,

∑ k/∈S
σ(k)=A

(
u jk(A,A)−u jk(B,A)

)
−∑ k/∈S

σ(k)=B

(
u jk(B,B)−u jk(A,B)

)
+∑i∈S

i 6= j
(u ji(A,A)−u ji(B,B)) if j ∈ S,

and the elements of −E σ̂
S ,

(−E σ̂
S ) j =−U j(σ

A
S , σ̂VrS)+U j(σ

B
S , σ̂VrS)(F.5)

=



−∑i∈S (u ji(A,A)−u ji(A,B)) if j /∈ S, σ̂( j) = A,

∑i∈S (u ji(B,B)−u ji(B,A)) if j /∈ S, σ̂( j) = B,

−∑ k/∈S
σ̂(k)=A

(
u jk(A,A)−u jk(B,A)

)
+∑ k/∈S

σ̂(k)=B

(
u jk(B,B)−u jk(A,B)

)
−∑i∈S

i 6= j
(u ji(A,A)−u ji(B,B)) if j ∈ S.

Noting that σ( j) = A if and only if σ̂( j) = B, σ( j) = B if and only if σ̂( j) = A, we can subtract (F.5) from
(F.4) to get

(Eσ
S − (−E σ̂

S )) j = (Eσ
S +E σ̂

S ) j =(F.6)
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=



∑i∈S ((u ji(A,A)−u ji(A,B))− (u ji(B,B)−u ji(B,A))) if j /∈ S, σ( j) = A,

∑i∈S ((u ji(A,A)−u ji(A,B))− (u ji(B,B)−u ji(B,A))) if j /∈ S, σ( j) = B,

∑ k/∈S
σ(k)=A

((
u jk(A,A)−u jk(B,A)

)
−
(
u jk(B,B)−u jk(A,B)

))
+∑ k/∈S

σ(k)=B

(
u jk(A,A)−u jk(B,A)

)
−
(
u jk(B,B)−u jk(A,B)

)
+∑i∈S

i 6= j
((u ji(A,A)−u ji(B,B))+(u ji(A,A)−u ji(B,B))) if j ∈ S,

If A is RD j(VrS) for j ∈ S, then the sum of the first and second lines of the third case of (F.6) is non-
negative. If A is PD jS for j ∈ S, then the third line of the third case of (F.6) is nonnegative. Therefore, if
A is RD j(VrS) and PD jS, the third case of (F.6) is nonnegative. That is, if j ∈ S, then (Eσ

S +E σ̂
S ) j ≥ 0, so

(Eσ
S ) j ≥ (−E σ̂

S ) j.
If ϒC

S is self-regarding, then (Eσ
S ) j ≥ (−E σ̂

S ) j for all j∈ S implies that ϒC
S (E

σ
S )≥ϒC

S (−E σ̂
S ) and therefore,

by (F.1), cS(σ ,(σB
S ,σVrS))≥ cS(σ̂ ,(σA

S , σ̂VrS)).
If A is ARDS j for all j /∈ S, then the first and second cases of (F.6) are nonnegative. That is, if j /∈ S,

(Eσ
S +E σ̂

S ) j ≥ 0, so (Eσ
S ) j ≥ (−E σ̂

S ) j. Therefore Eσ
S ≥E σ̂

S , and as ϒC
S is non-decreasing, ϒC

S (E
σ
S )≥ϒC

S (−E σ̂
S )

and therefore, by (F.1), cS(σ ,(σB
S ,σVrS))≥ cS(σ̂ ,(σA

S , σ̂VrS)).

Lemma 11. Let σ̂ , σ̃ be such that VA(σ̂) ⊆ VA(σ̃). If S follows a coalitional payoff-difference based rule,
then cS(σ̂ ,(σA

S , σ̂VrS))≥ cS(σ̃ ,(σA
S , σ̃VrS)).

Proof of Lemma 11. If σ̃S = σA
S , then cS(σ̂ ,(σA

S , σ̂VrS))≥ cS(σ̃ ,(σA
S , σ̃VrS)) = 0.

If σ̃S 6= σA
S , then σ̂S 6= σA

S . Using (F.5) for both E σ̂
S and E σ̃

S gives

((−E σ̂
S )− (−E σ̃

S )) j(F.7)

=



0 if j /∈ S, σ̂( j) = A,

0 if j /∈ S, σ̃( j) = B,

∑i∈S ((u ji(A,A)−u ji(A,B))+(u ji(B,B)−u ji(B,A))) if j /∈ S, σ̃( j) = A, σ̂( j) = B,

∑ k/∈S
σ̃(k)=A

(
uik(A,A)−uik(B,A)

)
−∑ k/∈S

σ̂(k)=A

(
uik(A,A)−uik(B,A)

)
+∑ k/∈S

σ̂(k)=B

(
uik(B,B)−uik(A,B)

)
−∑ k/∈S

σ̃(k)=B

(
uik(B,B)−uik(A,B)

)
if j ∈ S.

The third case of of (F.7) is nonnegative by (2.2). The first two lines of the fourth case, taken together,
are nonnegative as VA(σ̂) ⊆ VA(σ̃). The final two lines of the fourth case, taken together, are nonnegative
as VB(σ̃) ⊆ VB(σ̂). So every element of ((−E σ̂

S )− (−E σ̃
S )) j is nonnegative and −E σ̂

S ≥ −E σ̃
S . As ϒC

S is
non-decreasing, ϒC

S (−E σ̂
S )≥ ϒC

S (−E σ̃
S ) and therefore, by (F.1), cS(σ̂ ,(σA

S , σ̂VrS))≥ cS(σ̃ ,(σA
S , σ̃VrS)).
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Lemma 12. If S follows a coalitional payoff-difference based rule, then cS is asymmetric towards A if and
only if, for all σ , σ̃ such that VB(σ)⊆VA(σ̃), we have that cS(σ ,(σB

S ,σVrS))≥ cS(σ̃ ,(σ̃A
S , σ̃VrS)).

Proof of Lemma 12. Consider σ , σ ′, σ̃ such that VB(σ)⊆VA(σ̃).

If σ ′ is not equal to σ , (σB
S ,σVrS) or (σA

S ,σVrS), then by (F.1), cS(σ ,σ ′) = ∞, so setting σ̄ = σA, we have
that VB(σ

′)⊆VA(σ̄), VA(σ̃)⊆VA(σ̄), and cS(σ ,σ ′)≥ cS(σ̃ , σ̄), satisfying the condition in Definition 3.

If σ = σ ′, then, by (F.1), cS(σ ,σ ′) = 0. Letting σ̄ = σ̃ , we have VB(σ
′) =VB(σ)⊆VA(σ̃) =VA(σ̄) and, by

(F.1), cS(σ̃ , σ̄) = 0, so cS(σ ,σ ′)≥ cS(σ̃ , σ̄) = 0, satisfying the condition in Definition 3.

If σ 6= σ ′ = (σA
S ,σVrS), let σ̄ = σ̃ . Then we have VB(σ

′) ⊂ VB(σ) ⊆ VA(σ̃) = VA(σ̄) and, by (F.1),
cS(σ̃ , σ̄) = 0, so cS(σ ,σ ′)≥ cS(σ̃ , σ̄) = 0, satisfying the condition in Definition 3.

The only remaining case is σ 6= σ ′ = (σB
S ,σVrS). For σ̄ to satisfy VB(σ

′)⊆VA(σ̄), it must be that σ̄S = σA
S ,

and for cS(σ̃ , σ̄)< ∞, it must be that σ̄VrS = σ̃VrS. Hence, the condition in Definition 3 will be satisfied if
and only if cS(σ ,σ ′)≥ cS(σ̃ , σ̄) = cS(σ̃ ,(σA

S , σ̃VrS)), the condition in the statement of the lemma.

Proof of Proposition 4. Let σ , σ̃ be such that VB(σ) ⊆ VA(σ̃). Define σ̂ so that VB(σ) = VA(σ̂). Note that
VA(σ̂)⊆VA(σ̃). Then,

cS(σ ,(σB
S ,σVrS)) ≥︸︷︷︸

by Lemma 10

cS(σ̂ ,(σA
S , σ̂VrS)) ≥︸︷︷︸

by Lemma 11

cS(σ̃ ,(σA
S , σ̃VrS)),

satisfying the condition for asymmetry given in Lemma 12.

G. Payoff transformations

This section formalizes the arguments of Sections 6.2 and 6.3 of the main manuscript. Sometimes a
transformation of payoffs can carry conceptual weight. In such cases, it can be instructive to consider the
implications of the transformation with respect to conditions on the underlying payoffs. For example, we
can subject the payoffs of player i to a Homo Moralis transformation (Bergstrom, 1995; Alger and Weibull,
2013, 2016),

uHM
i j

(
σ(i),σ( j)

)
= (1−σ)ui j

(
σ(i),σ( j)

)
+σ ui j

(
σ(i),σ(i)

)
,(G.1)

where σ ∈ [0,1] is a parameter that weighs the payoff maximizing first term against the Kantian second
term.

Consider a player i who follows a self-regarding payoff-difference based rule according to the trans-
formed payoffs. For this rule to be asymmetric, we require risk dominance of A under the transformed
payoffs. Using payoffs uHM

i j in the definition of RDi and substituting, we obtain
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(1−σ) ∑
j∈Vr{i}

ui j(A,A)+ui j(A,B)−ui j(B,A)−ui j(B,B)︸ ︷︷ ︸
≥0 if and only if A is RDi

(G.2)

+2σ ∑
j∈Vr{i}

ui j(A,A)−ui j(B,B)︸ ︷︷ ︸
≥0 if and only if A is PDiV

≥ 0.

If σ = 0, then (G.2) is the risk dominance condition of Proposition 1[i]. If σ = 1, then (G.2) is the
component of the payoff dominance condition of Proposition 4[i] that relates to the incentives of player i
under coalitional choice by the entire player set V . If both terms under the summations are greater than zero,
then the condition holds regardless of the value of σ and so asymmetry will continue to hold even when σ

changes (see Newton, 2017; Nax and Rigos, 2016; Wu, 2017).
It is similarly possible to subject the payoffs of player i to an altruistic transformation,

uA
i j(σ(i),σ( j)) = (1−α)ui j(σ(i),σ( j))+α u ji(σ( j),σ(i)),

where α ∈ [0,1] is a parameter that weights the payoff maximizing first term against the altruistic second
term. This approach to altruistic behavior is less flexible than the approach taken in Section 4. However, it
is common, so it is worth noting that it can easily fit into our framework.

Again consider a player i who follows a self-regarding payoff-difference based rule according to the
transformed payoffs. For this rule to be asymmetric, we require risk dominance of A under the transformed
payoffs. Using payoffs uA

i j in the definition of RDi and substituting, we obtain a convex combination of risk
dominance and altruistic risk dominance,

(1−α) ∑
j∈Vr{i}

ui j(A,A)+ui j(A,B)−ui j(B,A)−ui j(B,B)︸ ︷︷ ︸
≥0 if and only if A is RDi

(G.3)

+α ∑
j∈Vr{i}

u ji(A,A)+u ji(B,A)−u ji(A,B)−u ji(B,B)︸ ︷︷ ︸
≥0 if and only if A is ARDi j

≥ 0.

H. Adding perturbations to an unperturbed process

This section relates to Footnote 10 of the main manuscript, which notes that models in the literature
that additively combine an unperturbed process with perturbations can be analyzed using a variant of the
convex combinations considered in Theorem 1. Consider a family of behavioral rules PS defined by a convex
combination of P̄S and ¯̄PS,

Pε
S = (1− ε)P̄ε

S + ε ¯̄Pε
S .(H.1)

That is, the share of ¯̄PS in PS vanishes as ε → 0. Note that for ε = 0, we have P0
S = P̄0

S . Following the same
steps as the Proof of Theorem 1, we obtain
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cS = min{c̄S, ¯̄cS +1},(H.2)

where the additional 1 arises from the multiplicative ε in the final term of (H.1). Note that even though
¯̄cS + 1 is not a cost function of a process, the definition of asymmetry can still be applied and the proof of
Lemma 2 continues to hold. It follows from Definition 3 that if ¯̄cS is asymmetric, then ¯̄cS +1 is asymmetric.
Therefore, if c̄S and ¯̄cS are asymmetric, then Lemma 2 implies that cS is asymmetric. That is, we have shown
a result similar to Theorem 1.

Proposition 5. If P̄S and ¯̄PS are asymmetric towards A, then PS defined by Pε
S = (1− ε)P̄ε

S + ε ¯̄Pε
S , is asym-

metric towards A.

Now, consider the special case P̄ε
S ≡ P̄0

S for all ε ∈ [0,1). That is, P̄S does not depend on ε . When this is
the case, we can consider PS as being formed by taking P̄S as a starting point and adding a small probability
ε of perturbations occuring according to ¯̄PS. In such cases, for PS to be asymmetric, it must be that P̄S is also
asymmetric.

Proposition 6. Let PS be defined by Pε
S = (1− ε)P̄ε

S + ε ¯̄Pε
S , and let P̄ε

S ≡ P̄0
S for all ε ∈ [0,1). If PS is

asymmetric towards A, then P̄S is asymmetric towards A.

As an example, consider S = {i}. Let P̄{i} be a rule according to which i sometimes remains playing his
current strategy and sometimes plays a best response, randomizing if there are multiple best responses. Let
¯̄P{i} be a rule that, independently of ε , selects each strategy with strictly positive probability. Combining
these according to (H.1), P{i} is then a best response with uniform deviations rule as defined in Section
4.2. Proposition 6 tells us that for this rule to be asymmetric, it must be the case that the unperturbed best
response rule is also asymmetric.

Proof of Proposition 6. If P̄ε
S ≡ P̄0

S for all ε ∈ [0,1), then transition probabilities under P̄S are either zero for
all ε ∈ [0,1) or positive for all ε ∈ [0,1). Considering (2.5), this implies that

The range of c̄S is {0,∞}.(H.3)

We prove the proposition by contrapositive. Assume that c̄S is not asymmetric. There must exist σ , σ ′, σ̃ as
per Definition 3, such that for any σ̃ ′ that satisfies the inclusion relations described in Definition 3, we have
c̄S(σ ,σ ′) 6≥ c̄S(σ̃ , σ̃ ′). Together with (H.3), this implies

c̄S(σ ,σ ′) = 0 and c̄S(σ̃ , σ̃ ′) = ∞.(H.4)

Combining (H.2) and (H.4), we obtain

cS(σ ,σ ′) = min{0, ¯̄cS(σ ,σ ′)+1}= 0 < 1≤min{∞, ¯̄cS(σ̃ , σ̃ ′)+1}= cS(σ̃ , σ̃ ′).(H.5)

Therefore, cS is not asymmetric. This concludes the proof.
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As a final observation that may be useful to practitioners, we note that a rule that, independently of
ε , selects each strategy with strictly positive probability is trivially asymmetric towards any given strategy.
Therefore, if P̄{i} satisfies the conditions of Proposition 6 and deviations are uniform in the sense that the
process follows (H.1) and ¯̄P{i} is independent of ε and selects each strategy with strictly positive probability,
then asymmetry of P{i} depends only on P̄{i}.

Proposition 7. Let P{i} be defined by Pε

{i} = (1− ε)P̄ε

{i} + ε ¯̄Pε

{i}. Let P̄ε

{i} ≡ P̄0
{i} and ¯̄Pε

{i} ≡
¯̄P0
{i} for all

ε ∈ [0,1). Let ¯̄P{i}(σ ,σ)> 0 and ¯̄P{i}(σ ,σ (i))> 0 for all σ . Then P{i} is asymmetric towards A if and only
if P̄{i} is asymmetric towards A.

Proof. ¯̄P{i} is trivially asymmetric, so if P̄{i} is asymmetric, by Proposition 5 we have that P{i} is asymmetric.
In the other direction, if P{i} is asymmetric, then P̄{i} is asymmetric by Proposition 6

I. Asymmetry with more than two strategies

This section shows how the results of Section 3 extend to environments with more than two strategies.
The case of more than two strategies is very similar to the two strategy case. The fundamental difference is
that instead of thinking in terms of strategy A versus strategy B, we think in terms of strategy A versus all
strategies other than A.

I.1 Amended model and definition

Amending the model of Section 2, let σ ∈ Σ := {A,B1,B2, . . .}V , where {A,B1,B2, . . .} is a finite set of
strategies. Denote by V¬A(σ)⊆V the set of players who play any strategy other than A at profile σ .

Asymmetry towards A is then defined by replacing VB(·) in Definition 3 by V¬A(·). That is, asymmetry
towards A is defined with respect to all other strategies rather than just B.

Definition 13. cS(·, ·) is asymmetric towards A if, for any σ ,σ ′, σ̃ ∈ Σ, such that V¬A(σ) ⊆ VA(σ̃), there
exists σ̃ ′ ∈ Σ such that VA(σ̃)⊆VA(σ̃

′), V¬A(σ
′)⊆VA(σ̃

′) and cS(σ ,σ ′)≥ cS(σ̃ , σ̃ ′).

Under this amended model and definition of asymmetry, Lemmas 1, 2 and Theorems 1, 2, 3 still hold.
Substituting V¬A(·) for VB(·), the proofs of Section A continue to apply.

I.2 Individual behavioral rules

Consider individual behavioral rules, that is S = {i}. The condition for asymmetry of c{i} in Definition
13 requires three cases to be checked, the first two of which are trivial.

Case 1. σ j 6= σ ′j for some j 6= i.

Let σ̃ ′= σA, so that VA(σ̃)⊆VA(σ̃
′) and V¬A(σ

′)⊆VA(σ̃
′) are satisfied. Further, note that ci(σ ,σ ′) =

∞, so c{i}(σ ,σ ′)≥ c{i}(σ̃ , σ̃ ′).
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Player i

Player j
A B1 B2 · · ·

A a 0 0 · · ·
B1 0 b1 0 · · ·
B2 0 0 b2 · · ·

...
...

...
...

. . .

Figure 1: Payoffs. Assume a≥ b1 ≥ b2 ≥ . . . without loss of generality. For each combination of strategies,
entries give payoffs for player i.

Case 2. σ j = σ ′j for all j 6= i; σi 6= A or σ ′i = A or σ̃i = A.

Let σ̃ ′= σ̃ , so that VA(σ̃)⊆VA(σ̃
′) and V¬A(σ

′)⊆VA(σ̃
′) are satisfied. Further, note that c{i}(σ̃ , σ̃ ′)=

0, so that c{i}(σ ,σ ′)≥ c{i}(σ̃ , σ̃ ′).

Case 3. σ j = σ ′j for all j 6= i; σi = A and σ ′i 6= A and σ̃i 6= A.

This case must be checked for the behavioral rule under consideration.

In summary, to check asymmetry towards A for individual behavioral rules, we only need to consider cases
in which player i switches from A at σ to another strategy at σ ′, and from a strategy other than A at σ̃ to A
at σ̃ ′.

I.3 Example - coordination with more than two strategies

For all j ∈V , j 6= i, let ui j be given by the table in Figure 1. Let i follow a rule such that c{i}(σ ,σ) = 0
and c{i}(σ ,(σ ′i ,σ−i)) =Ui(σ) for σ ′i 6= σi. The reader will observe that this is a condition dependent rule as
considered in Section 5. To show asymmetry of c{i} towards A, we check Case 3 from Section I.2.

Consider σ , σ ′, σ̃ such that σi = A, σ ′i 6= A, σ̃i 6= A and V¬A(σ)⊆VA(σ̃). From σ , a switch by player i
from A to some other strategy has a cost of Ui(σ) = a(|VA(σ)|−1). That is, c{i}(σ ,σ ′) = a(|VA(σ)|−1).
Let σ̃ ′ differ from σ̃ only in that σ̃ ′i = A. Note that VA(σ̃) ⊆ VA(σ̃

′) and V¬A(σ
′) ⊆ VA(σ̃

′) as required by
Definition 13. From σ̃ , the cost of player i switching to A depends on his strategy at σ̃ . Specifically, if
σ̃i = Bk, then c{i}(σ̃ , σ̃ ′) =Ui(σ̃) = bk (|VBk(σ̃)|−1) . We have

c{i}(σ̃ , σ̃ ′) = bk ( |VBk(σ̃)|−1) ≤︸︷︷︸
by bk≤b1

and VBk (·)⊆V¬A(·)

b1 ( |V¬A(σ̃)|−1)(I.1)

≤︸︷︷︸
as V¬A(σ)⊆VA(σ̃)
⇒V¬A(σ̃)⊆VA(σ)

b1 ( |VA(σ)|−1) ≤︸︷︷︸
by b1≤a

a( |VA(σ)|−1) = c{i}(σ ,σ ′).

Therefore, the conditions of Definition 13 are satisfied and ci is asymmetric towards A.
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