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Abstract

In misspecified environments, should an economic agent act rationally to-
wards optimizing some goal? If so, what should that goal be? Recent work
has focused on the goal of bidirectional consistency of beliefs and actions, in
effect finding a Nash equilibrium of an imaginary game in which one player
chooses actions and another player chooses beliefs. In general, such out-
comes maximize neither log-likelihood nor objective payoffs over the com-
bined space of beliefs and actions. We suggest a goal and associated learning
algorithm to maximize these latter quantities. When parameters are suitably
chosen, this goal function selects models favored by evolutionary forces.
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1. Introduction

Consider a decision maker (DM) whose action choice induces a distribution
over outcomes. The DM receives a payoff that depends on the outcome. The DM
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has a set of possible models, with each model specifying a subjective distribution
over outcomes for each possible action. If none of the models in this set specifies
the true distributions, the DM’s learning problem is said to be misspecified.1

What is a suitable solution concept for such problems? Esponda and Pouzo
(2016) suggest Berk-Nash equilibrium (BNE), in which the DM chooses a model
and a (possibly mixed) strategy such that

(C1) Actions in the support of the strategy are best responses to the model, and

(C2) The model maximizes expected log-likelihood given the strategy.

This can be interpreted as a Nash equilibrium of a game that takes place inside
the mind of the DM. There are two players in this game: one who chooses a strat-
egy to maximize expected payoff and another who chooses a model to maximize
expected log-likehood. Each player takes the other player’s choice as given.

Such an approach breaks the decision problem into two components and sets a
goal of attaining consistency between them. The solutions that attain this consis-
tency will not, in general, maximize log-likelihood or realized payoffs, even when
we restrict attention to outcomes that satisfy (C1). Furthermore, there may exist
outcomes that Pareto dominate the solution according to these criteria.

In this paper, we propose a goal function for a DM who cares about log-likelihood
and realized payoffs. We show how such a goal can be attained using a generaliza-
tion of Bayesian updating (Grünwald et al., 2017). Strikingly, our DM can obtain
higher payoffs than solutions defined by consistency of (C1) and (C2), whilst si-
multaneously attaining greater accuracy (in a Bayesian sense). Pragmatically, the
adoption of consistency-based solutions may be irrational in the sense that

“...a mode of behavior is irrational for a given decision maker, if,

when the decision maker behaves in this mode and is then exposed to the

analysis of her behavior, she feels embarrassed”

– Gilboa (2009, pp.139).

Considering fitness as a function of payoffs, we then describe how evolution
acts on the model set, showing how selection differs according to whether agents

1Alternatively, one can consider a DM whose prior over models does not include the true (or
equivalent) model in its support.
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face individual or aggregate payoff uncertainty. In the former case, models favored
by evolution maximize our goal function when it places all weight on payoffs rather
than accuracy. In the latter case, payoffs are first subjected to a logarithmic trans-
formation and there may exist fitness benefits from mixing between models.

Other recent work has examined the robustness of solutions for misspecified en-
vironments (Fudenberg and Lanzani, 2022; He and Libgober, 2021).2 These models
operate within the framework of BNE. In comparison, the current paper steps out-
side of this framework to examine alternative goals and learning rules. As such, it
relates to work that considers the intersection of evolutionary incentives and learn-
ing algorithms (see, e.g. Edhan et al., 2017) and to a more functional, goals-based
approach to understanding human behavior (Page, 2021) that seeks to understand
beliefs through the lens of fitness maximization (Johnson and Fowler, 2011; Jouini
et al., 2013; Frenkel et al., 2018; Heller, 2014).

In accepting (C1), the current paper follows not only BNE, but also other con-
cepts that assume best responses to beliefs that are not necessarily correct, for exam-
ple self-confirming equilibrium (Fudenberg and Levine, 1993), rationalizable con-
jectural equilibrium (Rubinstein and Wolinsky, 1994), mutually acceptable courses
of action (Greenberg et al., 2009) and wishful thinking (Caplin and Leahy, 2019).
Where these papers differ is in the restrictions placed upon beliefs.

The paper is organized as follows. Section 1.1 introduces key ideas via a simple
illustrative example. Section 2 decribes the general model and introduces our goal
function and solution concept. Section 3 presents results relating our concept to
existing concepts. Section 4 continues the analysis through a series of examples.
Section 5 gives learning and evolutionary foundations for our goal function. Section
6 extends our model to a multi-player environment. Section 7 concludes.

2At a further degree of separation, there is also non-evolutionarily based work such as Murooka
and Yamamoto (2023); Esponda et al. (2021); Fudenberg et al. (2021); Frick et al. (2023).
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1.1 Illustrative example

1.1.1 Coin tosses

Consider a coin which can land either heads (H) or tails (T ) and has a true
probability p(H) = 0.7 of landing heads. Every period, the DM earns a dollar if she
correctly guesses the outcome of the coin toss. The DM considers two models,

Blue model: pblue(H) = 0.45, Red model: pred(H) = 0.9.

Condition (C1) specifies that a DM who follows each model should best respond,

Blue model ⇒ bet on T , Red model ⇒ bet on H.

Expected log-likelihoods given the true probability p(H) = 0.7 are

LL(blue) =−0.738, LL(red) =−0.765.

Given these log-likelihoods, (C2) implies adoption of the blue model, the model
that would be learned by standard Bayesian updating (Berk, 1966). Combining, the
unique BNE is for the DM to follow the blue model and bet on tails.

Noting that the average realized payoff of 0.3 from following the blue model
is less than the average realized payoff of 0.7 from following the red model, we
propose a DM who learns a model to maximize some weighted sum of payoffs and
likelihood. If she puts all weight on likelihood, she will learn the blue model and
bet on tails. This is identical to BNE (Proposition 2). If she puts all weight on
payoff, she will learn the red model and bet on heads. This is identical to playing
a Nash equilibrium from the set of actions that can be justified by some model in
the model set (Proposition 3). For intermediate weightings, if payoff is weighted
lower than some threshold, the blue model will be chosen, and if payoff is weighted
higher than the threshold, the red model will be chosen.

As a comparison, consider adding the true model p(H) = 0.7 to the model set so
that the problem becomes well-specified. Any weighting that puts non-zero weight
on likelihood will then select the true model. Furthermore, any weighting will select
models with the same best response as the true model (Proposition 4). Of particular
note, if all weight is placed on payoff, the DM is indifferent between the red model
and the true model.
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1.1.2 Improvement in both dimensions

Consider a slight perturbation of the above problem. The true model is the
same, but we adjust red and blue so that they assign slightly different probabilities
depending on the DM’s bet.

Blue: pblue(H| bet on T ) = 0.45, pblue(H| bet on H) = 0.47,

Red: pred(H| bet on T ) = 0.9, pred(H| bet on H) = 0.88.

As before, (C1) dictates that a DM who follows the blue model should bet on
tails, whereas a DM who follows the red model should bet on heads. Calculating
expected log-likelihood for each model-action pair, we obtain

LL(blue,H) > LL(red,H) > LL(blue,T ) > LL(red,T ).

Not only is the payoff from (red,H) greater than the payoff from (blue,T ), but
log-likelihood is also greater. That is, of the two model-action pairs that satisfy
(C1), (red,H) is Pareto superior to (blue,T ), exhibiting more accurate beliefs and
higher realized payoffs.

In comparison, the unique BNE remains (blue,T ). The reason is that fixing

either action (H or T ), log-likelihood is maximized by the blue model. As before,
(C2) rules out the red model. There is a trade-off between the form of rationality
embodied in (C2) and the rationality of a DM who values accuracy and payoffs.

We show in Section 4 that similar analysis applies to the canonical misspecified
monopolist example from the literature (Nyarko, 1991; Esponda and Pouzo, 2016;
Fudenberg and Lanzani, 2022). Furthermore, goal functions to optimize accuracy
and payoffs can be learned using a generalization of Bayesian updating (Proposition
6). When weighted towards payoffs, these goal functions select models favored by
evolutionary forces (Proposition 7).

2. Model

A decision maker (DM) faces the following problem. A state ω is randomly
chosen from a set of states Ω according to probability distribution p. The DM
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chooses an action x from a finite set of actions x ∈ X. A function f : X×Ω→ Y
then determines a consequence y = f (x,ω) from a set of possible consequences Y.
The DM’s payoff is then given by payoff function π :X×Y→R. Let Q(·|x) denote
the true distribution over consequences conditional on action x being chosen.

Θ is the parameter set. Each θ ∈ Θ indexes a possible model that the DM
can learn. Specifically, each θ is associated with a subjective distribution over
consequences Qθ (·|x) conditional on each action x being chosen. If there is no
θ such that Qθ (·|x) = Q(·|x) for all x, we say that the problem is misspecified.
Otherwise, the problem is well-specified. The set of best responses induced by θ is
given by

X∗(θ) = argmax
x∈X

EQθ (·|x)π(x,Y ).

In our search for solutions, we restrict attention to model-action pairs such that
the action is a best response to the model. That is, we assume the condition we refer
to as (C1) in the introduction. This is uncontroversial to the extent that the func-
tional implication of a model is that it leads the DM to select some set of actions.
Referring to such actions as ‘best responses’ is consistent with an interpretation of
actions as revealed (subjective) preferences. Formally, we consider

Λ = {(θ ,x) : θ ∈Θ, x ∈ X∗(θ)} .

Note that every θ ∈ Θ appears in at least one element of Λ, but the same is not
true of x ∈ X. If x is not a best response for any model, then it will not be part
of any element of Λ. Conversely, the same actions can occur in multiple elements
of Λ. If x is a best response to some θ ∈ Θ, we say that x is justifiable. Given a
model-action pair (θ ,x) ∈ Λ, the objective (expected) payoff is

Π(θ ,x) = EQ(·|x)π(x,Y ).

Note that Π(θ ,x) is not directly affected by θ . Another quantity that we wish to
consider is the (expected) log-likelihood of pairs (θ ,x) ∈ Λ,
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LL(θ ,x) = EQ(·|x) logQθ (Y |x).

We consider a DM who wishes to maximize a goal function that combines ob-
jective payoff and log-likelihood. The exact specification does not matter, but for
the sake of expositional clarity, we take

G(θ ,x) = α Π(θ ,x)+(1−α)LL(θ ,x),

where α ∈ [0,1] determines the relative weighting of payoff and log-likelihood in
the goal function.3,4,5

Again for expositional simplicity, assume that for all justifiable x∈X, maxθ :x∈X∗(θ)LL(·,x)

3The negative of LL(θ ,x) is known as the cross entropy of Q and Qθ , and can be written

−LL(θ ,x) =−EQ(·|x) logQθ (Y |x) = EQ(·|x) log
Q(Y |x)

Qθ (Y |x)︸                   ︷︷                   ︸
=:D(Q(·|x)||Qθ (·|x))

−EQ(·|x) logQ(Y |x)︸                   ︷︷                   ︸
=:H(Q(·|x))

.

Kullback-Leibler divergence D(Q||Qθ ) measures the difference between Qθ and Q. Shannon en-
tropy H(Q) measures the level of uncertainty in the true distribution Q. Substitution gives

G(θ ,x) = α Π(θ ,x)− (1−α)D(Q(·|x)||Qθ (·|x))− (1−α)H(Q(·|x)).

Similar to Π(θ ,x), the Shannon entropy term H(Q(·|x)) is not directly affected by θ . Consequently,
for given α , our specification is equivalent to decreasing the payoff from x by the Shannon entropy
and using Kullback-Leibler divergence alone as a measure of accuracy.

4For fixed x, log-likelihood and Kullback-Leibler divergence give identical orderings of mod-
els in terms of accuracy (see Footnote 3). Across x, this equivalence fails, so the informational
differences between log-likelihood and Kullback-Leibler divergence become salient. In particu-
lar, LL(θ ,x) can be estimated using a simple empirical mean of logQθ (·|x), whereas estimating
D(Q(·|x)||Qθ (·|x)) additionally requires an estimate of the true distribution Q(·|x). If such informa-
tion can be used, it calls into question the necessity of a model of misspecification in the first place.
Nevertheless, any reader who strongly prefers Kullback-Leibler divergence to log-likelihood should
feel free to substitute the former for the latter in our goal function.

5Our goal function is similar to the wishful thinking goal function of Caplin and Leahy (2019),

EQθ (·|x)π(x,Y )−ρD(Q(·|x)||Qθ (·|x)).

with the crucial difference that where we have Π(θ ,x) = EQ(·|x)π(x,Y ), the cited paper has
EQθ (·|x)π(x,Y ). The wishful thinking DM desires a high subjective payoff and accurate beliefs,
whereas our goal function favours a high objective payoff and accurate beliefs. This makes sense.
The cited model is, after all, a model of wishful thinking, whereas our focus is on normative con-
siderations and evolutionary foundations. Indeed, the relationship between objective payoffs and
evolution is considered in Section 5.
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exists. We suggest the solution set

Λ
∗ = arg max

(θ ,x)∈Λ

G(θ ,x).(1)

Let G∗ = max(θ ,x)∈Λ G(θ ,x). If α = 1, then the DM’s goal is to maximize payoff.6

If α = 0, then the DM’s goal is to maximize log-likelihood. For given values of α ,
we will occasionally denote the solution set by Λ∗α .

3. Initial analysis

To get a feeling for the concepts defined in the model section, we shall examine
some edge cases. As a point of comparison, it suits to formally define the alterna-
tive approach of Nyarko (1991) and Esponda and Pouzo (2016), in which the DM
chooses a model while keeping x fixed. Specifically, consider the solution set

Λ
′
=

{
(θ ′,x) ∈ Λ : θ

′ ∈ argmax
θ∈Θ

LL(θ ,x)
}
.(2)

Considering the definitions of Λ and Λ′, we see that Λ′ is effectively the set of
Nash equilibria of a game between one player who chooses x to be a best response
to θ and another player who chooses θ to maximize LL(θ ,x) given x. Elements
of Λ′ are pure Berk-Nash equilibria (BNE). Comparing to Λ∗, we see that Λ∗ in-
volves holistic choice of model and action by the DM. In contrast, Λ′ involves
separate modules that optimize for model and action respectively, each taking the
other module’s choice as given.

The example of Section 1.1 shows that solutions in Λ′ can be Pareto-dominated
by solutions in Λ∗. The definitions of Λ∗ and Λ′ imply that the opposite is not
possible. A solution in Λ∗ will never be Pareto-dominated by a solution in Λ′.

Proposition 1. Let (θ ∗,x∗) ∈ Λ∗α and (θ ′,x′) ∈ Λ′.

(i) α ∈ (0,1) and LL(θ ∗,x∗)< LL(θ ′,x′) =⇒ Π(θ ∗,x∗)> Π(θ ′,x′),

6For α = 1, actions played in elements of Λ∗ are those that would be learned by a belief-free
robust learning algorithm over {x : ∃θ such that (θ ,x) ∈ Λ}.
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(ii) α ∈ (0,1) and Π(θ ∗,x∗)< Π(θ ′,x′) =⇒ LL(θ ∗,x∗)> LL(θ ′,x′),

(iii) α = 0 =⇒ LL(θ ∗,x∗)≥ LL(θ ′,x′),

(iv) α = 1 =⇒ Π(θ ∗,x∗)≥Π(θ ′,x′).

Define the set of pure justifiable Nash equilibria (JNE), the set of Nash equilib-
ria when the DM is is restricted to only choose actions that are justifiable according
to some model in Θ.

J = argmax
x∈X,

x is justifiable

EQ(·|x)π(x,Y ).(3)

In analyzing Λ∗, the first case we consider is α = 0. It turns out that if the
true distribution and subjective distributions over consequences are independent of
x, then Λ∗

α=0 and Λ′ are equivalent. That is, a DM who is only concerned with
maximizing log-likelihood will play a pure BNE. To formalize, define conditions

(I1) Q(·|x) is constant in x.

(I2) For all θ ∈Θ, Qθ (·|x) is constant in x.

Condition (I1) corresponds to the true distribution over consequences being in-
dependent of the actions of the DM. Condition (I2) corresponds to the DM mod-
elling consequences as being independent of actions. Under these conditions, log-
likelihood LL(θ ,x) is independent of x. It follows that it does not matter whether
maximization of LL(θ ,x) happens over pairs (θ ,x) as required for Λ∗

α=0, or over θ

while keeping x fixed as required for Λ′.

Proposition 2. If (I1) and (I2) hold, then Λ∗
α=0 = Λ′.

In general, when consequences are not independent of actions, sets Λ∗
α=0 and

Λ′ differ. In particular, solutions in Λ∗
α=0 may be strictly more accurate than so-

lutions in Λ′. The reason is that Λ′ contains models that maximize log-likelihood
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for fixed actions, whereas Λ∗
α=0 maximizes log-likelihood across all model-action

pairs. Examples where these sets are not equal will be given in Section 4.7

Having considered α = 0, we turn to the opposed case α = 1. In this case, the
DM’s goal is to maximize objective payoffs Π(θ ,x) over pairs (θ ,x) ∈ Λ. As θ

does not directly affect Π(θ ,x), the only role of Θ is to restrict the possible values
of x in (θ ,x) ∈ Λ to those that are justifiable by some θ ∈ Θ. Consequently, when
α = 1, the solution set Λ∗

α=1 corresponds to the set of JNE.

Proposition 3. (θ ∗,x∗) ∈ Λ∗
α=1 if and only if x∗ ∈J .

Note that Proposition 3 does not require independence assumptions. Further, if
every action is justifiable, then Λ∗

α=1 corresponds to the pure Nash equilibria of the
game with actions X and payoffs EQ(·|x)π(x,Y ). This is true regardless of whether
the problem is well-specified. That is, the actions played in Λ∗

α=1 depend on the
set of justifiable actions, but not on how those actions are justified. If a particular
action leads to the highest payoffs, it will be played in Λ∗

α=1 regardless of whether
it is justified by correct beliefs or by completely erroneous beliefs.

Taking Propositions 2 and 3 together we see that, under independence assump-
tions (I1) and (I2), solution set Λ∗ varies between a Berk-Nash equilibrium and a
justifiable Nash equilibrium as α varies from 0 to 1. If, in addition to independence,
we assume that the problem is well-specified, then these solutions converge.

Proposition 4. Let the problem be well-specified so that there exists θ † ∈ Θ such

that for all x, Qθ †(·|x) = Q(·|x). If (I1) and (I2) hold, then for all x ∈ X∗(θ †), for

all α , we have (θ †,x) ∈ Λ∗α . Conversely, if (θ ∗,x∗) ∈ Λ∗α , then x∗ ∈ X∗(θ †), and if

(θ ∗,x∗) ∈ Λ∗
α<1, then Qθ∗(·|x) = Qθ †(·|x) for all x ∈X.

That is, in well-specified problems in which consequences are independent of
the DM’s actions, Λ∗, Λ′ and J all give the same predictions in terms of actions,
although the models that support these actions may differ.

7Note that our description of BNE as a Nash equilibrium internal to the DM can be extended
to Λ∗

α=0 in the following way. Consider a sequential game in which one player who wishes to
maximize LL(·, ·) chooses θ ∈ Θ, following which the other player best responds to θ . Solutions
(θ ∗,x∗) ∈ Λ∗

α=0 will be subgame perfect equilibria of this game. If best responses are unique, they
will be the only subgame perfect equilibria. This analogy ceases to hold for α > 0.
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4. Examples

4.1 Coin tosses

Here we discuss the illustrative example from the introduction. A decision
maker guesses the outcome of a coin toss, X = {H,T}. The outcome of the coin
toss is independent of the decision maker’s action and is given by y = f (x,ω) = ω ,
where ω = H with probability 0.7 and ω = T with probability 0.3. Hence we
have Q(H|x) =: Q(H) = p(H) = 0.7 for all x. Payoffs are given by π(x,y) = 1
if x = y and π(x,y) = 0 if x , y. The parameter set is Θ = {θ 1,θ 2} and we let
Qθ 1(H|x) =: Qθ 1(H) = 0.45 and Qθ 2(H|x) =: Qθ 2(H) = 0.9 for all x. Note that T

is the unique best response to beliefs Qθ 1 , whereas H is the unique best response
to beliefs Qθ 2 or to the true model Q. Therefore, we have Λ = {(θ 1,T ),(θ 2,H)}
with objective payoffs Π(θ 1,T ) = 0.3 and Π(θ 2,H) = 0.7. However, θ 1 is more
accurate than θ 2 in the sense that LL(θ 1,T )> LL(θ 2,H). Combining,

G(θ 1,T )≥ G(θ 2,H) ⇐⇒ α ≤
log 1331

1024

4+ log 1331
1024

.

So for low values of α , the DM prioritizes accuracy over payoffs and the solu-
tion set Λ∗ = {(θ 1,T )}. For high values of α , the DM values payoffs enough that
the solution set is Λ∗ = {(θ 2,H)}. Comparing to the propositions in the previous
section, we see this is consistent with α = 0 giving Berk-Nash equilibria and α = 1
giving justifiable Nash equilibria. That is, consistent with Proposition 2, we have
Λ∗

α=0 = Λ′ = {(θ 1,T )}. Consistent with Proposition 3, we have Λ∗
α=1 = {(θ 2,H)}

and J = {H}.
Consider adding the true model θ †, Qθ †(H|x) =: Qθ †(H) = 0.7, to the pa-

rameter set so that Θ = {θ 1,θ 2,θ †}. Consistent with Proposition 4, we obtain
Λ∗α = {(θ †,H)} for α < 1. Proposition 2 then implies that Λ′ = {(θ †,H)}.

For α = 1, the goal function places no weight on accuracy and all weight on
payoffs, so we obtain Λ∗

α=1 = {(θ †,H),(θ 2,H)}. That is, because θ † and θ 2 induce
identical actions, the DM who cares only about payoffs is indifferent between them.
Proposition 3 then implies that J = {H}.
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4.2 Arrow-Debreu securities

We extend the example of the preceding subsection so that the DM chooses
shares x ∈ X = {0,0.01, . . . ,0.99,1}n, ∑

n
j=1 x j = 1, of a unit of Arrow-Debreu se-

curity to invest in outcomes H1, . . . ,Hn. Similar to before, y = f (x,ω) = ω , where
ω = H j with probability pH j . The DM’s action does not affect outcome probabili-
ties. Hence we have Q(H j|x)=Q(H j)= p(H j) for all x, j. The DM is aware that his
action does not affect outcome probabilities and has Bernoulli beliefs parametrized
by Θ⊆X, so that ∀θ ∈ Θ,Qθ (H j) = θ j. Payoffs are given by π(x,H j) = u(x j) for
all j, where u is a utility function.

Proposition 4 tells us that if the problem is well-specified, that is if there exists
θ † ∈ Θ such that Qθ †(H j) = θ

†
j = p(H j) = Q(H j) for all H j, then for 0 < α < 1,

we have Λ∗α = {(θ †,x) : x ∈ X∗(θ †)}.
If, however, the problem is misspecified, then different values of α will, in

general, give different solution sets. An interesting exception is log utility.

Proposition 5. If u(·) = log(·), then Λ∗ is the same for all values of α .

Proof of Proposition 5.

Substituting into the definitions of Π(θ ,x) and LL(θ ,x),

Π(θ ,x) = EQ(·)π(x,Y ) =
n

∑
j=1

p(H j)u(x j),(4)

LL(θ ,x) = EQ(·) logQθ (Y ) =
n

∑
j=1

p(H j) logθ j.(5)

For all θ ∈Θ, best responses x ∈ X∗(θ) maximize

EQθ (·)π(x,Y ) =
n

∑
j=1

Qθ (H j)u(x j) =
n

∑
j=1

θ j logx j,(6)

such that ∑
n
j=1 x j = 1. Solving this, we obtain x j = θ j for all j.

Substituting x j = θ j and u(·) = log(·) into the right hand side of (4), we obtain
an expression identical to the right hand side of (5). So for all α ,
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G(θ ,x) = α Π(θ ,x)+(1−α)LL(θ ,x) =
n

∑
j=1

p(H j) logθ j,(7)

which is independent of α . Therefore, Λ∗ = argmax(θ ,x)∈Λ G(θ ,x) is also indepen-
dent of α . �

This result is a consequence of the celebrated Kelly criterion which states that,
under log utility, an optimizing investor with model θ will invest a share in H j

that equals the subjective probability Qθ (H j) of H j. As a consequence of this in-
vestment behavior, the realized payoff when H j occurs equals the log-likelihood
of H j. That is, under these conditions, payoffs equal log-likehoods and therefore
the tension between maximizing payoff and maximizing log-likelihood is resolved
without recourse to any weighting parameter α .

4.3 Well-specified model without independence

Consider the following simple example of a well-specified model in which (I1)
and (I2) do not hold. There are two states Ω = {0,1}, p(0) = p(1) = 1/2, two
actions X = {a,b} and two possible consequences Y = {0,1}. Action a leads to
consequence 1 with certainty, f (a,0) = f (a,1) = 1. Action b leads to a conse-
quence equal to the state, f (b,ω) = ω . There is only one model in the parameter
set, Θ = {θ †}, and this is the true model Qθ †(·|x) = Q(·|x).

Let payoffs be independent of actions and consequences, π(·, ·) ≡ 0, so that
Π(·, ·)≡ 0. Calculating log-likelihoods,

LL(θ †,a) = EQ(·|a) logQ(Y |a) = logQ(1|a)︸   ︷︷   ︸
=1

= 0,

LL(θ †,b) = EQ(·|b) logQ(Y |b) = 1
2

logQ(0|b)︸   ︷︷   ︸
=1/2

+
1
2

logQ(1|b)︸   ︷︷   ︸
=1/2

= log
1
2
.

Consequently, for any α < 1, we have that Λ∗α = {(θ †,a)}. By definition, Λ′ =

{(θ †,a),(θ †,b)}, so Λ∗
α=0 , Λ′, in contrast to Proposition 2. In addition, note

that best responses to θ † are X∗(θ †) = {a,b}, yet (θ †,b) < Λ∗
α<1, in contrast to

Proposition 4.
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4.4 Misspecified model without independence

Here we consider an example from Nyarko (1991) as adapted by Esponda and
Pouzo (2016). A monopolist chooses a price x∈X= {2,10} that generates demand
d = φ0(x)+ω , where ω ∼ N(0,1). It is assumed that φ0(2) = 34 and φ0(10) = 2.
The outcome y = f (x,ω) = d and payoff is π(y) = xy.

The monopolist describes demand using a parametric model d = fθ (x,ω) =

a−bx+ω , where θ = (a,b) ∈Θ is a parameter vector and ω ∼ N(0,1). The set of
possible models is given by Θ = [33,40]× [3,3.5].

Let θ0 ∈ R2 provide a perfect fit for the demand so that φ0(x) = φθ0(x) for all
x ∈ X. This gives θ0 = (a0,b0) = (42,4) < Θ and therefore the monopolist has a
misspecified model. Note that Q(·|x) is normal with mean φ0(x) and unit variance.
Similarly, Qθ (·|x) is normal with mean φθ (x) = a−bx and unit variance.

4.4.1 Maximizing the goal function

By substituting the true model parameters into the payoff function, we obtain
expected objective payoffs from (θ ,x),

Π(θ ,x) = EQ(·|x) [π(x,Y )] = Ep [x(42−4x+ω)](8)

= x(42−4x)+ xEp[ω] =

{
68 if x = 2
20 if x = 10

If α = 1, then this is the end of the story. As x = 2 leads to a higher payoff than
x = 10, the solution set is x = 2 combined with any beliefs to which x = 2 is a best
response. That is,

Λ
∗ =

{
(θ ,2) : θ = (a,b),

a
b
≤ 12

}
.

If α < 1, then for either of the x that could be chosen, we find the (θ ,x)∈Λ that
maximizes LL(θ ,x). For x= 2, we obtain θ = (40, 10/3). In words, of all parameters
in Θ that induce 2 as a best response, log-likelihood is maximized by θ = (40, 10/3).
For x = 10, we obtain θ = (36,3). That is, of all parameters in Θ that induce 10 as
a best response, log-likelihood is maximized by θ = (36,3). Calculating,
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θ′′ = θ∗

Figure 1: The misspecified monopolist. Set Θ does not contain the true parameters
θ0. Line a/b = 12 is the boundary between the regions in which x = 10 and x = 2
are best responses. Panel (a). For α = 1, the solution set Λ∗ is the entire region for
which x = 2 is a best response. For α < 1, Λ∗ = {(θ ∗,2)}. Panel (b). Maximizing
LL(θ ,2) over Θ, we obtain θ = (40,3), at which x = 2 is not a best response.
Maximizing LL(θ ,10) over Θ, we obtain the the thick black line, on which x = 10
is not a best response. Therefore, Λ′ = ∅. Fixing σ(2) = 35/36 and σ(10) = 1/36,
expected log-likelihood is maximized at θ ′′ = θ ∗, therefore Λ

′′
= {θ ′′,(35/36, 1/36)}.

LL((40, 10/3),2)> LL((36,3),10).

Combining Π(θ ,x) and LL(θ ,x), we see that G(θ ,x) is uniquely maximized at
(θ ∗,x∗) = ((40, 10/3),2) and therefore solution set Λ∗ is a singleton.

Λ
∗ =

{((
40,

10
3

)
,2
)}

.

4.4.2 Comparison to the internal consistency approach

Consider α < 1. The argument of Nyarko (1991) is that if a Bayesian monopo-
list consistently chooses action 2, then he will learn a model to which the only best
response is action 10. Specifically, θ = (40,3) maximizes LL(·,2) over Θ and the
unique best response to θ = (40,3) is to play x = 10. Conversely, if he consistently
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chooses action 10, then he will learn a model to which the unique best response is
action 2 (see Figure 1). In conclusion, Λ′ = ∅.

Esponda and Pouzo (2016) solve the non-existence problem by allowing the
monopolist to mix between actions 2 and 10. Let strategy σ ∈∆(X) be a probability
distribution over actions. Define BNE in mixed strategies as

Λ
′′
=

{
(θ ′′,σ) :σ(x)> 0⇒ (θ ′′,x) ∈ Λ(9)

and θ
′′ ∈ argmax

θ∈Θ
∑

x∈X
σ(x)LL(θ ,x)

}
.

The idea is that if the DM mixes between 2 and 10 in the right proportions,
then he can learn a model to which both actions are a best response. Specifically,
he must learn θ = (a,b) such that a/b = 12. For such a model, specifically θ ′′ =

(40, 10
3 ), to maximize expected log-likelihood given mixing proportions, we require

σ = (σ(2),σ(10)) = (35/36, 1/36). Hence,

Λ
′′
=

{((
40,

10
3

)
,

(
35
36

,
1
36

))}
.

At first glance, the internal consistency approach underpinning Λ′ and Λ′′ ap-
pears to model a DM who cares about payoffs (solutions must be in Λ) as well
as about accuracy (solutions maximize log-likelihood given x or σ ). However, as
noted in Section 3, such solutions are effectively finding Nash equilibria of a game
between two modules within the decision maker, and as such involve a disconnect
between (i) the idea of payoff maximization that underpins Nash-style concepts,
and (ii) the choice of beliefs, which ignores payoffs and maximizes log-likelihood.

The monopolist example of this section makes an even stronger point. Even if
the DM cares about accuracy as well as payoffs, the solutions in Λ′ or Λ′′ may do
a bad job with respect to both. Indeed, such solutions may fail to be even locally
Pareto efficient. Consider the solution in Λ′′ and consider a marginal increase in
σ(x), holding θ fixed. By (8), expected objective payoff will increase. Furthermore,
calculations reveal that LL(θ ,x) will increase.8 That is, by increasing σ(x), both

8Also, the Kullback-Leibler divergence of Qθ from the true distribution will decrease.
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payoffs and log-likelihood are increased. If we continue to increase σ(2), these
improvements continue until we reach σ(2) = 1, the unique solution in Λ∗.9,10

What has been sacrificed to obtain these improvements? The answer is “ratio-
nality” in the specific sense that for fixed σ(x)> 35/36, the model θ = (40, 10/3) does
not maximize log-likelihood. Conversely, in the sense of the quote we give in the
introduction, the solution in Λ′′ could be considered irrational, as it is predicated
upon randomization between two actions and learning from outcomes, but never
recognizing that the expected payoff from one action is higher than the expected
payoff from the other action.

5. Learning

Consider a DM who is part of a (possibly infinite) population. In every period
t ≥ 1, for every (θ ,x) ∈ Λ, there are some members of the population who follow
the model θ and play x. Every member of the population experiences the same
sequence of states {ωt}t . Assume a uniform bound on the absolute value of log-
likelihoods. The DM learns from the realized payoffs and realized log-likelihoods
of players in the population. For each (θ ,x) ∈ Λ, the DM’s generalized likelihood

(see Grünwald et al., 2017) after t periods is
9In general, it is clear that we cannot increase the expected value of our goal function G(·, ·)

by mixing between actions or model-action pairs. Indeed, for pairs (θ 1,x1) and (θ 2,x2) to give
the same value of G(·, ·), any payoff difference between the pairs must be exactly offset by a log-
likelihood difference in the other direction. Of course, if our goal were to maximize some concave
function of G(·, ·), then mixing might give an advantage, and we discuss something similar following
Proposition 8 in Section 5.

10Generalizing, for (θ ′′,σ) ∈Λ′′, if σ has n actions in its support, then any distribution over these
n actions is a best response to θ ′′. Let V be the n−1 dimensional simplex of such distributions. Note
that (expected) objective payoffs and log-likelihood are linear on V . Choose a set S of n−1 unit basis
vectors for V . Each s ∈ S is associated with a change in objective payoffs and log-likelihood, a 2-
dimensional change vector that we denote c(s). Let C = {c(s) ∈R2 : s ∈ S}. If there exists a strictly
positive linear combination of vectors in C, then (θ ′′,σ) is not Pareto optimal. In the monopolist
example, n = 2 and the (1-dimensional) probability of playing x = 2 is a basis associated with a
strictly positive change vector. Therefore, the BNE is not Pareto optimal. If the change vector
had instead different signs on objective payoffs and log-likelihood, then the BNE would have been
Pareto optimal within {(θ ′′, σ̂) : σ̂ ∈V}. For n≥ 3, things are simpler as |S|> 1, so it will usually
be the case that |C| > 1. If any pair of vectors in C are linearly independent, then we can choose
a strictly positive linear combination of these vectors, so (θ ′′,σ) is not Pareto optimal. That is, for
n≥ 3, Pareto optimality of (θ ′′,σ) requires knife-edge conditions to hold.
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gQ(θ ,x) (ω1, . . . ,ωt) =
t

∏
τ=1

(
eαπ(x, f (x,ωτ ))+(1−α) logQθ ( f (x,ωτ )|x)

)
.(10)

The evolution of generalized Bayes’ rule mimics Bayes’ rule: the generalized
posterior weight of each model is proportional to its generalized likelihood. Given
prior distribution µ0 on Λ, the generalized Bayesian posterior distribution gµt is

gµt(A) =

∫
A gQ(θ ,x) (ω1, . . . ,ωt) dµ0(θ ,x)∫
Λ

gQ(θ ,x) (ω1, . . . ,ωt) dµ0(θ ,x)
, A⊆ Λ.(11)

That is, the DM obtains information on the realized payoffs and log-likelihoods
that arise from playing different actions. As the sequence of states is realized over
time, he uses this information to update his generalized Bayesian posterior over
model-action pairs in Λ. Applying the Strong Law of Large Numbers, we are able
to show that the DM gradually places more and more weight on the model-action
pairs (θ ,x) that optimize his preferred weighting of payoffs and likelihood as given
by G(θ ,x) = α Π(θ ,x)+(1−α)LL(θ ,x).

Proposition 6. Let Λ∗ε = {(θ ,x) ∈ Λ : G(θ ,x)≥G∗−ε}. Assume that µ0(Λ
∗
ε)> 0

for all ε > 0. Then, for all ε > 0, we have gµt(Λ
∗
ε)→ 1 p-a.s. as t→ ∞.

Remark 1. The procedure learns over model-action pairs in Λ. If every model in
Θ has a unique best response, this is identical to learning over Θ. If a model θ ∈
Θ has multiple best responses x′,x′′, . . ., then (θ ,x′), (θ ,x′′), . . . ∈ Λ have distinct
generalized likelihoods.

Remark 2. The generalized likelihood of (θ ,x) is determined by observing a se-
quence of realized payoffs and realized log-likelihoods. It does not matter whether
such sequences arise from each member of the population following λ ∈ Λ deter-
ministically or randomizing over elements of Λ.

Remark 3. Our procedure uses information related to all actions x∈X . As such, it is
suited to information-rich environments in which a diversity of behavior can be ob-
served either directly, or indirectly as information disperses through the population.
In contrast, BNE are justified by fixing a candidate x′, after which the updating pro-
cedure does not use information on outcome distributions for alternative actions. Of
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course, choosing suitable candidates for x′ is itself a distinct problem and assessing
all x to find all suitable candidates requires no less information than our procedure
for α = 0. A converse issue, using too little information, arises in the case of mixed
BNE. This is clear from the monopolist example of Section 4.4.2, where we saw
that in mixing between two actions, in order to maintain BNE, the monopolist has
to ignore evidence that one action leads to higher log-likelihood than the other.

Remark 4. If α = 1, then from (10) we obtain

log gQ(θ ,x) (ω1, . . . ,ωt) =
t

∑
τ=1

π(x, f (x,ωτ)).(12)

Observe that (12) is similar to the reinforcement algorithm of Erev and Roth (1998).
Consider finite Λ and strictly positive π . Relax the assumption that we update
every gQ(θ ,x) every period and instead begin by updating each (θ ,x) ∈ Λ once,
then in each subsequent period update each (θ ,x)∈Λ with probability proportional
to log gQ(θ ,x). Theorem 2 of Beggs (2005) implies that this process converges,
gµt(Λ

∗
α=1)→ 1 p-a.s. as t→ ∞. Finally, note that this argument remains true even

if we consider α < 1, providing that απ +(1−α) logQθ is suitably normalized to
be strictly positive at all outcomes.

5.1 Evolution

If realized payoffs are understood as evolutionary fitness (assuming π > 0), we
can analyze which models will have an evolutionary advantage. It is to be expected
that agents who follow models that lead to high payoffs will outperform agents who
follow models that lead to lower payoffs.

Consider a population of unit mass. Let the share of the population following
each model at time t be given by ςt , a probability measure on Λ. For expositional
simplicity, assume ς0 has finite support Λ̄ ⊆ Λ. For every t ≥ 1, from period t− 1
to t, the share of the population playing λ ∈ Λ̄ changes proportionally to the mean
realized payoff of agents that play λ in period t− 1, with a normalization so that
the total mass of the population remains one.
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5.1.1 Independent states

If every agent has an independent realization of the state ωt , the mean realized
payoff of agents that play λ = (θ ,x) at time t will equal the expected objective
payoff from λ . Of all the models that are followed at t = 0, denote the set of
models with the highest expected objective payoffs by

Λ̄
∗ = argmax

(θ ,x)∈Λ̄

EQ(·|x)π(x,Y ).

These models are favored by evolution.

Proposition 7. If agents have independent realizations of the state, then ςt(Λ̄
∗)→ 1

as t→ ∞.

Proposition 7 holds because, when states are independent, the models with the
highest expected objective payoffs consistently lead to the highest mean realized
payoffs. If Λ̄ = Λ, this can be restated in terms of the solution concepts considered
earlier in the paper. Evolution leads agents to adopt the solution set Λ∗

α=1 and, by
Proposition 3, play x∗ ∈J . Evolution favors justifiable Nash equilibria.

5.1.2 Shared states

Now consider the situation in which every agent faces the same realization of
the state ωt . In this case, as agents’ payoffs are correlated, maximizing expected
fitness for a single period is no longer the same as maximizing long run fitness. To
maximize long run fitness we should instead maximize the expected growth rate
(Lewontin and Cohen, 1969; Robson, 1996). Denote the set of models with the
highest expected growth rate by

Λ̄
∗∗ = argmax

(θ ,x)∈Λ̄

EQ(·|x) logπ(x,Y ).

These models are favored by evolution.

Proposition 8. If agents have the same realization of the state, then ςt(Λ̄
∗∗)→ 1

p-a.s. as t→ ∞.
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That is, in the long run the models with the highest expected growth rates dom-
inate, even though they may occasionally suffer adversity in the form of a bad re-
alization of ωt . If Λ̄ = Λ, this can be restated in terms of the solution concepts
considered earlier in the paper. If we replace original payoffs π by logπ , then
evolution leads agents to adopt the solution set Λ∗

α=1 of the transformed problem.
Evolution thus favors justifiable Nash equilibria of the transformed problem.

There is a further subtlety that cannot be explained with reference to a simple
transformation. This is that the concavity of the log function means that even higher
long run growth may sometimes be achieved via mixing between models. That is,
there exist situations in which mixing between models may evolutionarily outper-
form any single model. That this is not true for independent states but is true for
shared states is immediately clear from a comparison of Λ̄∗ and Λ̄∗∗. An analogy of
this observation can be found in the literature on the evolution of risk preferences.
Specifically, the forces that encourage mixing in our setting are analogous to the
forces that benefit a genotype that can generate heterogeneous risk preferences in
phenotype (Heller and Nehama, 2022). Preferences are, after all, part of a model of
the world.

6. Equilibrium with more than one player

Here, we extend the analysis to situations with a set of players M. Adjust the
consequence function so that it depends on the profile of actions, f :XM×Ω→ Y.
For player i ∈ M, let Θi be the parameter set, π i the payoff function, X∗i(θ i) the
best responses to θ i ∈ Θi, Λi the set of model-action pairs such that the action is a
best response to the model. For simplicity, assume in this section that Θi are finite.

The true distribution over outcomes will depend on the actions taken by all of the
players. We use notation that accommodates the possibility of mixing over elements
of Λi. For any given player i, let λ i ∈ ∆(Λi), i∈M be a probability distribution over
model-action pairs, and let λ be the vector of λ i, i∈M. Denote the true conditional
distribution faced by player i, keeping λ j, j , i fixed, by Qi

λ
(·|x). Given this true

distribution, objective payoffs Πi
λ

, log-likelihoods LLi
λ

, and
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Gi
λ
= α

i
Π

i
λ
+(1−α

i)LLi
λ

are defined as before. Define the solution set

ΛΛΛ
∗ =

{
λ : supp λ

i ⊆ Λ
∗i
λ

}
.

Solutions in ΛΛΛ
∗ involve each player i choosing model-action pairs to maximize

their goal function, keeping fixed the distribution over the actions of the other play-
ers. Pure solutions involve each player choosing a single model-action pair in Λi. It
is possible that a pure solution may not exist, but mixing guarantees existence.11

Proposition 9. ΛΛΛ
∗ , ∅

One interpretation of this approach is that it reduces the problem to a game with
player set M, action sets Λi and payoff functions Gi

λ
(·). Each pure (mixed) solution

corresponds to a pure (mixed) Nash equilibrium of the reduced game together with
supporting models. The supporting intuition is that, under an appropriate learning
procedure, the role of model misspecification is to reduce the choice of model-
action pairs available to a decision maker. The decision maker then assesses the
success he obtains from playing a model-action pair according to (i) the payoff
from playing the action, and (ii) how well the model fits observed outcomes.

An important special case is when player i only cares about payoffs, α i = 1.
Fixing λ j, j , i, Proposition 3 tells us that actions played by i with positive proba-
bility under ΛΛΛ

∗ will maximize J i
λ

. If this is true for all players, then behavior under
ΛΛΛ
∗ corresponds to the Nash equilibria of the game in which players are restricted to

justifiable actions and payoffs are given by Πi
λ

.
Regarding learnability and evolutionary selection, analogies of the results in

Section 5 can be constructed for a multi-player setting. Given the clear similarities

11The type of mixing used here is consistent with the “mass action” interpretation of mixing from
John Nash’s PhD thesis (Nash, 1950a). Under this interpretation, a mixture between (θ i1,x1) and
(θ i2,x2) would indicate that player i is drawn from some population and that such a draw renders
some chance of player i being of type i1, for whom x1 is a best response, and some chance of player
i being of type i2, for whom x2 is a best response. Note that this is not the same as a mixing player
holding beliefs that are a convex combination of Qi

θ i1 and Qi
θ i2 , in which case it is possible that

neither x1 nor x2 is a best response.
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between standard Nash equilibrium and equilibrium concepts in misspecified set-
tings, the reader will not be surprised that insights gained from studying models of
learning (Newton, 2018), evolutionary stability of NE (see, e.g. Dekel et al., 2007;
Heifetz et al., 2007; Ok and Vega-Redondo, 2001) and the effects of assortativity
in matching (Alger and Weibull, 2013; Bergstrom, 1995; Eshel and Cavalli-Sforza,
1982; Newton, 2017) also apply to misspecified settings.

7. Conclusion

We conclude by anticipating some criticisms. First, our suggested approach de-
scribes a DM who is individually rational to the extent that his choice variables,
θ and x, are jointly determined with regard to the maximization of a goal func-
tion. Rationality of an individual is usually contrasted with collective rationality
of a group of individuals. However, it is also possible to contrast the rationality
of an individual with the rationality of multiple selves within that individual. The
internal consistency approach uses such multiple selves, treating the DM as a pair
of agent-modules, then demanding rational choice from both the agent-module that
chooses actions and the agent-module that chooses models. From an evolutionary
perspective, if the unit of replication is the DM himself, we might expect more
holistic choice procedures to be favored over such a disaggregated approach.

Second, maximizing G(θ ,x) requires learning about objective payoffs and log-
likelihoods for model-action pairs. In contrast, the consistency approach requires
learning about log-likelihoods given a strategy and, if best responses change as a
result, hoping that the process converges. If we ignore the issue of convergence,
it seems that the information requirements of the consistency approach are lower
as long as α < 1. However, again considering the problem from an evolutionary
perspective, it is clear why DMs that gain from finding solutions in Λ∗ would want
to learn, by observing society and history, information related to the components of
G(θ ,x). It also seems reasonable for the ability to garner high payoffs and make
accurate predictions to be favored by natural selection. In contrast, if we consider
BNE Λ′ and mixed BNE Λ′′, it is less clear why evolution would favour a DM
that learns only from his own choices and ignores information about payoffs and

–23–



log-likelihoods that could be gathered from observing society. Is consistency really
such a compelling goal? If it is true that “the human mind is programmed for
survival, not for truth” (Gray, 2018), then why would consistency favour survival?

We do not pretend to have definitive answers to all of the questions above, but
hope to have convinced the reader that the issues we have considered here are wor-
thy of further consideration.

A. Appendix: Omitted proofs

Proof of Proposition 1.

Immediate from definitions of Λ∗α and Λ′. �

Proof of Proposition 2.

Under (I1) and (I2), LL(θ ,x) is independent of x. Noting that every θ ∈ Θ appears
in at least one element of Λ, this implies that

(θ ∗,x∗) ∈ arg max
(θ ,x)∈Λ

LL(θ ,x) ⇒ θ
∗ ∈ argmax

θ∈Θ

LL(θ ,x∗).(13)

That is, Λ∗
α=0 ⊆ Λ′.

Conversely, let (θ ′,x′) ∈ Λ′. By definition of Λ′,

θ
′ ∈ argmax

θ∈Θ

LL(θ ,x′),(14)

which as LL(θ ,x) is independent of x implies that LL(θ ′,x′) ≥ LL(θ ,x) for all
(θ ,x) ∈ Λ. Therefore, (θ ′,x′) ∈ Λ∗. That is, Λ′ ⊆ Λ∗

α=0. �

Proof of Proposition 3.

By definition, x′ is justifiable if and only if there exists nonempty Θ̄(x′) ⊆ Θ such
that, for all θ ′ ∈ Θ̄(x′), (θ ′,x′) ∈ Λ.

For α = 1,

G(θ ,x) = Π(θ ,x) = EQ(·|x)π(x,Y ) for all (θ ,x) ∈ Λ.(15)
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As Π(θ ,x) does not directly depend on θ , it follows that x∗maximizes EQ(·|x)π(x,Y )

over justifiable x if and only if, for all θ ∗ ∈ Θ̄(x∗), (θ ∗,x∗) maximizes G(θ ,x). �

Proof of Proposition 4.

By definition of Λ∗, (θ ,x) ∈ Λ∗ solves max(θ ,x)∈Λ G(θ ,x), with

G(θ ,x) = αΠ(θ ,x)+(1−α)LL(θ ,x).(16)

Note that Π(θ ,x) does not directly depend on θ . Furthermore, if (I1) and (I2)
hold, then LL(θ ,x) is independent of x. Therefore, we choose x to maximize Π(θ ,x)

and θ to maximize LL(θ ,x), before verifying that the resulting model-action pair is
in Λ and therefore in Λ∗.

First, choose θ to maximize LL(θ ,x). By definition of θ †, for any given x ∈X,

θ
† ∈ argmax

θ∈Θ

LL(θ ,x).(17)

Next, choose x to maximize Π(θ ,x),

x† ∈ argmax
x∈X

EQ(·|x)π(x,Y ).(18)

As Q(·|x) = Qθ †(·|x), (18) implies

x† ∈ argmax
x∈X

EQ
θ†(·|x)π(x,Y ).(19)

That is, x† ∈ X∗(θ †), and consequently (θ †,x†) ∈ Λ.
For the converse part of the proposition, assume (θ ∗,x∗) ∈ Λ∗. If Qθ∗(·|x∗) ,

Qθ †(·|x∗), then the DM is not maximizing LL(θ ,x). Furthermore, by (I2), if Qθ∗(·|x∗)=
Qθ †(·|x∗), then Qθ∗(·|x) = Qθ †(·|x) for all x ∈ X. If x∗ < X∗(θ †), then the DM is
not maximizing Π(θ ,x).

For 0 < α < 1, Λ∗ maximizes a convex combination of LL(θ ,x) and Π(θ ,x).
As we have seen, under the conditions of the proposition, this can be done inde-
pendently for θ and x. Therefore, maximizing G(θ ,x) requires that Qθ∗(·|x∗) =
Qθ †(·|x∗) and x∗ ∈ X∗(θ †).
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For α = 0, Λ∗ maximizes LL(θ ,x), which requires Qθ∗(·|x∗) = Qθ †(·|x∗). This
implies that x∗ ∈ X∗(θ †).

For α = 1, Λ∗ maximizes Π(θ ,x) which requires x∗ ∈ X∗(θ †). �

Proof of Proposition 6.

The result follows from the strong law of large numbers (SLLN):

gµt(Λ
∗
ε) = 1−gµt(ΛrΛ

∗
ε) =︸︷︷︸

by(11)

1−
∫

ΛrΛ∗ε
gQ(θ ,x) (ω1, . . . ,ωt) dµ0(θ ,x)∫

Λ
gQ(θ ,x) (ω1, . . . ,ωt) dµ0(θ ,x)

≥ 1−
∫

ΛrΛ∗ε
gQ(θ ,x) (ω1, . . . ,ωt) dµ0(θ ,x)∫

Λ∗
ε/2

gQ(θ ,x) (ω1, . . . ,ωt) dµ0(θ ,x)

= 1−
∫

ΛrΛ∗ε
elngQ(θ ,x)(ω1,...,ωt) dµ0(θ ,x)∫

Λ∗
ε/2

elngQ(θ ,x)(ω1,...,ωt) dµ0(θ ,x)

=︸︷︷︸
by(10)

1−
∫

ΛrΛ∗ε
et ∑

t
τ=1

1
t (απ(x, f (x,ωτ ))+(1−α) logQθ ( f (x,ωτ )|x))dµ0(θ ,x)∫

Λ∗
ε/2

et ∑
t
τ=1

1
t (απ(x, f (x,ωτ ))+(1−α) logQθ ( f (x,ωτ )|x))dµ0(θ ,x)

≈︸︷︷︸
p-a.s. for t large

by SLLN

1−
∫

ΛrΛ∗ε
et G(θ ,x) dµ0(θ ,x)∫

Λ∗
ε/2

et G(θ ,x) dµ0(θ ,x)

≥ 1− et (G∗−ε) µ0(ΛrΛ∗ε)

et (G∗−ε/2) µ0(Λ
∗
ε/2
)

t→∞−−−→ 1.

�

Proof of Proposition 7.

Consider λ , λ ∗ such that ς0(λ ),ς0(λ
∗)> 0. Let λ < Λ̄∗, λ ∗ ∈ Λ̄∗.

At time t every agent following λ has an independent state ωt . Therefore, the
mean realized payoff for agents following λ equals EQ(·|x)π(x,Y ). Similarly, the
mean realized payoff for agents following λ ∗ equals EQ(·|x∗)π(x,Y ).

As λ < Λ̄∗, λ ∗ ∈ Λ̄∗, we have

EQ(·|x)π(x,Y )< EQ(·|x∗)π(x
∗,Y ).(20)

As ςt(·) grows proportionally to realized payoffs (subject to normalization),

–26–



ςt(λ )

ςt(λ ∗)
=

ςt−1(λ )

ςt−1(λ ∗)

EQ(·|x)π(x,Y )
EQ(·|x∗)π(x∗,Y )︸               ︷︷               ︸

<1 by (20)

for t ≥ 1.(21)

Iterating (21), we obtain

ςt(λ )

ςt(λ ∗)
=

ς0(λ )

ς0(λ ∗)

(
EQ(·|x)π(x,Y )

EQ(·|x∗)π(x∗,Y )

)t
t→∞−−−→ 0.(22)

As (22) holds for all λ < Λ̄∗, we have ςt(Λ̄
∗)→ 1 as t→ ∞. �

Proof of Proposition 8.

Consider λ , λ ∗∗ such that ς0(λ ),ς0(λ
∗∗)> 0. Let λ < Λ̄∗∗, λ ∗∗ ∈ Λ̄∗∗, so that

EQ(·|x) logπ(x,Y )< EQ(·|x∗∗) logπ(x∗∗,Y ).(23)

As ςt(·) grows proportionally to realized payoffs (subject to normalization),

ςt(λ )

ςt(λ ∗∗)
=

ςt−1(λ )

ςt−1(λ ∗∗)

π(x, f (x,ωt−1))

π(x∗∗, f (x∗∗,ωt−1))
for t ≥ 1.(24)

Iterating (24), we obtain

ςt(λ )

ςt(λ ∗∗)
=

ς0(λ )

ς0(λ ∗∗)

t−1

∏
τ=0

π(x, f (x,ωτ))

π(x∗∗, f (x∗∗,ωτ))
.(25)

Taking logs,

logςt(λ )− logςt(λ
∗∗)− logς0(λ )+ logς0(λ

∗∗)(26)

= t

(
1
t

t−1

∑
τ=0

logπ(x, f (x,ωτ))−
1
t

t−1

∑
τ=0

logπ(x∗∗, f (x∗∗,ωτ))

)

t→∞−−−−−→
by SLLN

t

EQ(·|x) logπ(x,Y )−EQ(·|x∗∗) logπ(x∗∗,Y )︸                                               ︷︷                                               ︸
<0 by (23)



–27–



t→∞−−−→−∞.

Consider the left hand side of (26). As the second term is positive and the final
two terms do not depend on t, it must be that the first term logςt(λ )→ −∞ as
t→∞. This implies that ςt(λ )→ 0 as t→∞. As this holds for all λ < Λ̄∗∗, we have
ςt(Λ̄

∗∗)→ 1 as t→ ∞. �

Proof of Proposition 9.

The game Γ with player set I, pure strategies (Λi)i∈I and payoffs given by Gi
λ

is finite and thus has at least one, possibly mixed, Nash equilibrium by Nash’s
existence theorem (Nash, 1950b). Choose one such equilibrium and denote it by
λ̂ = (λ̂ i)i.

We claim that λ̂ ∈ ΛΛΛ
∗. If this is not the case, then by the definition of ΛΛΛ

∗, for
some i ∈ I, we have

supp λ̂
i * Λ

∗i
λ̂
.(27)

That is, there exists (θ i,xi) ∈ ΛirΛ∗i
λ̂

such that λ̂ i((θ i,xi))> 0.

As (θ i,xi) < Λ∗i
λ̂

, there exists (θ̃ i, x̃i) ∈ Λi such that

Gi
λ̂
(θ̃ i, x̃i)> Gi

λ̂
(θ i,xi).(28)

Therefore, λ̂ i with λ̂ i((θ i,xi))> 0 is not a best response to λ̂ , contradicting λ̂ being
a Nash equilibrium. Therefore, λ̂ ∈ ΛΛΛ

∗, proving the proposition. �
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