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Population games

Consider a situation in which

• There are many agents.

• There is no assumption of equilibrium.

• Agents use some behavioral rule in order to
choose their strategies.

• The share of agents playing each strategy
changes over time.
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Population games

Define a population game

1. Continuum of mass 1 of agents.

2. Strategies S = {1, . . . , n}.
3. Set of population states

X =

{
x ∈ Rn :

∑
i∈S

xi = 1

}
.

4. Payoff function πi : X → R for each strategy
i ∈ S.
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Best response dynamics

The dynamics that immediately
come to mind when we think of
Nash equilibrium.



Best response dynamic

• Let time be continuous, t ≥ 0.

• Let any given agent become active and update
his strategy at a given Poisson rate (to avoid
notation, let this equal 1).

• When an agent updates, he chooses a best
response to the current population state.

• Strategy i is a best response to x if i solves
maxj∈S πj(x).
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Best response dynamics

• Let BR(x) be the set of best responses (including mixed best responses) to
population state (mixed strategy) x,

BR(x) =

{
w ∈ X : wi > 0 =⇒ i ∈ max

j∈S
πj(x)

}
.

• Best response dynamics (BRD) satisfy

ẋ ∈ BR(x)− x (1)

where ẋ is the time derivative of x.

• Under a BRD, trajectory {x(t)}t≥0 satisfies (1).
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where ẋ is the time derivative of x.

• Under a BRD, trajectory {x(t)}t≥0 satisfies (1).

7



Best response dynamics

• Let BR(x) be the set of best responses (including mixed best responses) to
population state (mixed strategy) x,

BR(x) =

{
w ∈ X : wi > 0 =⇒ i ∈ max

j∈S
πj(x)

}
.

• Best response dynamics (BRD) satisfy
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Best response dynamic
Coordination game

• Let payoffs be given by

π(x) = Πx, Π =

4 0 0
0 3 0
0 0 2


• That is, a coordination game

π1(x) = 4x1

π2(x) = 3x2

π3(x) = 2x3

9



Best response dynamic
Coordination game

• Diagram illustrates trajectory of BRD.

• Colour indicates how fast or slow it is
moving.

• Stable rest points (filled circles)
correspond to strict Nash equilibria.

• Unstable rest points (unfilled circles).
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Similar to best response
BNN, Smith, Sample BRD

Average payoff at x is

π̄(x) =
∑
i∈S

xi πi(x)

• Agent with current strategy i chooses a strategy j at random.

— Brown-von Neumann-Nash dynamic. If πj(x) > π̄(x), then switch to j with
probability proportional to πj(x)− π̄(x).

— Smith dynamic. If πj(x) > πi(x), then switch to j with probability proportional to
πj(x)− πi(x).

• Sample BRD. Agent samples k actions from the population and best responds to
the distribution given by the sample.
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Logit dynamic
Noisy best response

• Logit dynamic satisfies

ẋ = M(x)− x, for Mi(x) =
e

1
η
πi(x)∑

j∈S e
1
η
πj(x)

• As η → 0, approaches a BRD.

• As η → ∞, approaches uniform random choice.
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Logit dynamic

η = 0.2 η = 0.95

13



Logit dynamic

η = 1.1 η = 2
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Riemannian game
dynamics

A class of dynamics that includes
the replicator dynamic.



Riemannian game dynamics
Definition

• Tangent space (possible directions) RS
0 := {z ∈ RS

+ :
∑

i∈S zi = 0}.

• Continuously differentiable cost of motion

C : RS
0 ×Xint → (0,∞)

such that C(·, x) is a +ve definite quadratic form.

• Riemannian game dynamics defined by

ẋ = argmax
z∈RS

0

(∑
i∈S

πi(x) zi − C(z, x)

)
.

• C(z, x) corresponds to a Riemannian metric on X, hence the name.
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Riemannian game dynamics
Replicator dynamic

• Letting C(z, x) = 1
2

∑
i∈S

z2i
xi
,

• Solving we obtain the replicator dynamics

ẋi = xi

(
πi(x)− π̄(x)

)
.

• Difference between growth rates ẋi
xi

and
ẋj

xj
is

proportional to payoff difference πi(x)− πj(x).
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Positive correlation (PC)

All dynamics so far have ẋ as a function of x,

ẋ = Vπ(x).

Definition (Positive correlation)

Vπ(x) ̸= 0 implies that Vπ(x)
′ π(x) > 0.

• PC requires that whenever a population is not at rest, the covariance between
strategies’ growth rates and payoffs is positive.

• Satisfied by Riemannian (including replicator), BRD, BNN, Smith dynamics.
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Lyapunov & potential
functions

Important methods for analyzing
convergence.



Lyapunov functions

• A common way to analyze a dynamic is to find a Lyapunov function.

• Such functions are monotonic along solution trajectories.

• Attain maxima (or minima) at rest points of the dynamic.

Definition (Lyapunov function)

A continuously differentiable function L : X → R is an (increasing) strict Lyapunov
function for ẋ = Vπ(x) if L̇(x) ≡ ∇L(x)′Vπ(x) ≥ 0 for all x ∈ X, with equality only at
rest points of Vπ.
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Potential games

Define Φ to normalize vectors while retaining information on differences.

Φ =


1− 1

n − 1
n · · · − 1

n
− 1

n 1− 1
n · · · − 1

n
...

. . .
. . .

. . .

− 1
n − 1

n . . . 1− 1
n


Definition (Potential game)

Let π : X → Rn be a population game. π is a potential game if it admits a
continuously differentiable potential function f : X → R such that

∇f(x) = Φπ(x) for all x ∈ X.
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Climbing potential

Examples of potential games:

• Normal form games composed of a common interest term plus an externality term.

• Cournot competition (f equals total surplus).

• Congestion games.

Theorem (Climbing potential)

Let π be a potential game with potential function f , and let ẋ = Vπ(x) satisfy (PC).
Then f is a strict Lyapunov function for Vπ.
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PC and potential
Replicator for coordination (potential game) and Rock-Paper-Scissors (not a potential game)

Π =

(
4 0 0
0 3 0
0 0 2

)

L(x) = f(x) = 1
2 π̄(x)

Π =

(
0 −3 1
1 0 −3
−3 1 0

)

Instead use L(x) = −x1x2x3
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Logit does not satisfy PC
However, by adding an entropy term to potential, we get a Lyapunov function

L(x) ̸= f(x) = 1
2 π̄(x) L(x) = f(x)− η

∑
i∈S xi log xi
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Reinforcement, synthesis
& higher order dynamics

Some fascinating connections.



Reinforcement learning

• For each i ∈ S, score yi(t) measures the performance of strategy i up to time t.

• Strategies updated via logit, but with scores (instead of payoffs),

xi(t) =
e

1
η
yi(t)∑

j∈S e
1
η
yj(t)

[
all agents simultaneously

]
• n-th order dynamics defined by how the score is updated according to payoffs.

dn

dtn
yi(t) = πi

(
x(t)

)
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Reinforcement to replicator

• Taking logs

log xi(t)− log xj(t) =
1

η

(
yi(t)− yj(t)

)
• Differentiating

ẋi
xi

− ẋj
xj

=
1

η

(
d

dt
yi(t)−

d

dt
yj(t)

)
• So, ẏi = πi(x) (i.e. n = 1) gives the replicator dynamic (!)

ẋi
xi

− ẋj
xj

=
1

η

(
πi
(
x(t)

)
− πj

(
x(t)

))
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Reinforcement to replicator

• For general n,

dn

dtn
xi = xi

1

η

(
πi
(
x(t)

)
− π̄

(
x(t)

))
+ terms independent of payoffs

• For example, when n = 2, the acceleration of
the dynamic is proportional to payoffs.

• By building n-th order replicator dynamics via
reinforcement and logit, we ensure that x
remains within X.
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Wrapping up

• We have taken a quick look at some dynamics and methods that can be used to
study population games.

• There are other dynamics that we have not had time to address here.

• For example, projection dynamics, tempered best response dynamics, imitation via
pairwise comparison, best experienced payoff dynamics, completely uncoupled
dynamics, regret testing, trial and error learning.

• There are also other classes of games for which there exist general results, for
example contractive games and supermodular games.

34



newton@kier.kyoto-u.ac.jp

For references, see reading list.


