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@ Population games %

Consider a situation in which

e There are many agents.
e There is no assumption of equilibrium.

e Agents use some behavioral rule in order to
choose their strategies.

e The share of agents playing each strategy

changes over time.



@ Population games %

Define a population game : %gf“.
1. Continuum of mass 1 of agents. : 2
2. Strategies S = {1,...,n}.

3. Set of population states

X:{xeR”:Z%:l}-

i€S

4. Payoff function m; : X — R for each strategy
i€ S.



Best response dynamics




@ Best response dynamic

e Let time be continuous, ¢ > 0.

e Let any given agent become active and update
his strategy at a given Poisson rate (to avoid
notation, let this equal 1).

e When an agent updates, he chooses a best
response to the current population state.

e Strategy i is a best response to z if i solves

max;es 7, ().




Best response dynamics

o Let BR(x) be the set of best responses (including mixed best responses) to
population state (mixed strategy) z,

BR(x) = {w eEX:w>0 = iEmaij(x)}.
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e Best response dynamics (BRD) satisfy

t € BR(z) —x (1)

where & is the time derivative of z.




Best response dynamics

o Let BR(x) be the set of best responses (including mixed best responses) to
population state (mixed strategy) z,

BR(x) = {w eX:w>0 = i€ masg(ﬂj(m)}.
j€
e Best response dynamics (BRD) satisfy
t € BR(z) —x (1)

where 7 is the time derivative of x.
e Under a BRD, trajectory {z(t)}+>¢ satisfies (1).



Best response dynamic

Coordination game

e Let payoffs be given by

e That is, a coordination game

7T1(.%') = 4331
Wg(x) = 32122

7T3(33) = 2.933




Best response dynamic

Coordination game

Diagram illustrates trajectory of BRD.
Colour indicates how fast or slow it is
moving.

Stable rest points (filled circles)
correspond to strict Nash equilibria.

Unstable rest points (unfilled circles).




Similar to best response
BNN, Smith, Sample BRD

Average payoff at x is
m(zr) = sz mi(x)
€S
e Agent with current strategy 7 chooses a strategy j at random.
— Brown-von Neumann-Nash dynamic. If w;(z) > 7(z), then switch to j with
probability proportional to m;(x) — m(x).
— Smith dynamic. If m;(2) > m;(x), then switch to j with probability proportional to
mj(x) — mi(x).
e Sample BRD. Agent samples k actions from the population and best responds to
the distribution given by the sample.



Logit dynamic

Noisy best response

PUBLICG ENEMY

e Logit dynamic satisfies

e As n — 0, approaches a BRD.

e As 1) — 00, approaches uniform random choice.
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Riemannian game
dynamics




Riemannian game dynamics

Definition

e Tangent space (possible directions) ]Rg ={z € Ri : > ieg % = 0}
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Riemannian game dynamics

Definition

Tangent space (possible directions) ]Rg ={z € Ri : > ieg % = 0}

Continuously differentiable cost of motion
C RS x X — (0, 00)

such that C'(-,x) is a +ve definite quadratic form.

e Riemannian game dynamics defined by

& = arg max (Z mi(x) zi — C(z, x)) :

s
z€Ry i€S

e (C(z,x) corresponds to a Riemannian metric on X, hence the name.



Riemannian game dynamics

Replicator dynamic

o Letting C(z,2) = 5 ZZES T

e Solving we obtain the replicator dynamics

& = (m(w) - 77(3:)).

e Difference between growth rates % and % is
proportional to payoff difference m;(x) — #j ().




Positive correlation (PC)

All dynamics so far have i as a function of =z,

& = Vz(x).

Definition (Positive correlation)
Vi (z) # 0 implies that V. (z) w(x) > 0.

e PC requires that whenever a population is not at rest, the covariance between

strategies’ growth rates and payoffs is positive.
e Satisfied by Riemannian (including replicator), BRD, BNN, Smith dynamics.
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Lyapunov & potential
functions




Lyapunov functions

e A common way to analyze a dynamic is to find a Lyapunov function.
e Such functions are monotonic along solution trajectories.

e Attain maxima (or minima) at rest points of the dynamic.

Definition (Lyapunov function)

A continuously differentiable function L : X — R is an (increasing) strict Lyapunov
function for & = V() if L(z) = VL(z)'Vz(xz) > 0 for all x € X, with equality only at
rest points of V.
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Definition (Potential game)

Let 7 : X — R" be a population game. 7 is a potential game if it admits a
continuously differentiable potential function f : X — R such that

Vf(x)=®n(z) forall x e X.



Climbing potential

Examples of potential games:
e Normal form games composed of a common interest term plus an externality term.
e Cournot competition (f equals total surplus).

e Congestion games.

Theorem (Climbing potential)

Let m be a potential game with potential function f, and let & = V;(z) satisfy (PC).
Then f is a strict Lyapunov function for V.




PC and potential

Replicator for coordination (potential game) and Rock-Paper-Scissors (not a potential game)

400 0
m=1{o0o 3 ol .
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Logit does not satisfy PC

However, by adding an entropy term to potential, we get a Lyapunov function

L(z) = f(z) = n ) jeg vilogzi
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Reinforcement, synthesis
& higher order dynamics



Reinforcement learning

e For each i € S, score y;(t) measures the performance of strategy i up to time t.
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Reinforcement learning

e For each i € S, score y;(t) measures the performance of strategy i up to time t.

e Strategies updated via logit, but with scores (instead of payoffs),

1.
e;yz(t)

ri(t) = ———F—— [all agents simultaneously]|
2jes en?s!

e n-th order dynamics defined by how the score is updated according to payoffs.

%yl(t) = (x(t))




Reinforcement to replicator

e Taking logs
1
log z;(t) —logz;(t) = E(yz@ —Yj (t))
e Differentiating
& #; 1[d d
z oz 7 (dty (8) = it )>
e So, y; = m(x) (i.e. n = 1) gives the replicator dynamic (!)

Ti L _ 717<7ri(x(t)) — (l‘(ﬂ))

T €5



Reinforcement to replicator

e For general n,

d’n

1
@xi = xl; <7ri (x(t)) — 7‘1’(:1:(75)))
+ terms independent of payoffs

e For example, when n = 2, the acceleration of
the dynamic is proportional to payoffs.
e By building n-th order replicator dynamics via

reinforcement and logit, we ensure that z
remains within X.




@ Wrapping up

e We have taken a quick look at some dynamics and methods that can be used to
study population games.

e There are other dynamics that we have not had time to address here.

e For example, projection dynamics, tempered best response dynamics, imitation via
pairwise comparison, best experienced payoff dynamics, completely uncoupled
dynamics, regret testing, trial and error learning.

e There are also other classes of games for which there exist general results, for
example contractive games and supermodular games.
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For references, see reading list.



