Jonathan Newton, Kyoto University



• The Nash Program works to link noncooperative game theory and cooperative game theory.



- The Nash Program works to link noncooperative game theory and cooperative game theory.
- The Evolutionary Nash Program works to link evolutionary game theory and cooperative game theory.



- The Nash Program works to link noncooperative game theory and cooperative game theory.
- The Evolutionary Nash Program works to link evolutionary game theory and cooperative game theory.
- Dynamic models of cooperative games.



- The Nash Program works to link noncooperative game theory and cooperative game theory.
- The Evolutionary Nash Program works to link evolutionary game theory and cooperative game theory.
- Dynamic models of cooperative games.
- Understanding cooperative solution concepts in terms of the processes that can lead to them.



# Matching

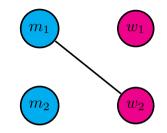
Stable matches, dynamics, oneshot principle and evolutionary axiomatization.





# Marriage problem

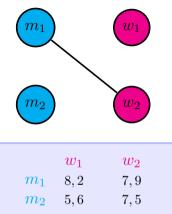
- Set of men  $M = \{m_1, \dots, m_k\}$
- Set of women  $W = \{w_1, \ldots, w_l\}$
- Players  $N = M \cup W$
- Matchings G, undirected bipartite networks
- Each player matched to  $\leq 1$  other player.
- g(i) is the partner of i at  $g \in G$ .
- $g(i) = \emptyset$  indicates that i is single at  $g \in G$ .





# Marriage problem

- Player *i* has utility  $u_i(g), g \in G$ .
- Players only get utility from own partner. — If g(i) = g'(i), then  $u_i(g) = u_i(g')$
- Strict preferences over partners — If  $g(i) \neq g'(i)$ , then  $u_i(g) \neq u_i(g')$



Payoff of zero when unmatched.



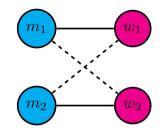
# **Stable matchings**

## **Definition (Stable matchings)**

A matching g is stable if

- 1. There are no *i*, j = q(i) such that *i* prefers to be single than matched to j.
- 2. There are no i, j who prefer one another to their partners at q.

Let  $S \subseteq G$  be the set of stable matchings.



|                                                                                                                                                         | $w_1$ | $w_2$ |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|--|
| $m_1$                                                                                                                                                   | 8,2   | 7,9   |  |  |
| $m_2$                                                                                                                                                   | 5, 6  | 7,5   |  |  |
| Payoff of zero when unmatched.                                                                                                                          |       |       |  |  |
|                                                                                                                                                         |       |       |  |  |
| $S = \{g_M, g_W\} \qquad \qquad$ |       |       |  |  |
| $\mathcal{O} = \{g_M, g_W\}$                                                                                                                            | $g_W$ |       |  |  |



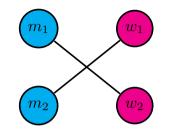
## Rawlsian stable matchings

## Definition (Rawlsian stable matchings)

The set of Rawlsian stable matchings is

 $Ra = \arg\max_{g \in S} \min_{i \in N} u_i(g)$ 

Rawlsian stable matchings are the stable matchings that maximize the lowest payoff amongst all players.



|                                | $w_1$ | $w_2$ |  |  |
|--------------------------------|-------|-------|--|--|
| $m_1$                          | 8,2   | 7,9   |  |  |
| $m_2$                          | 5, 6  | 7,5   |  |  |
| Payoff of zero when unmatched. |       |       |  |  |

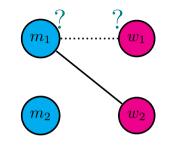
$$Ra = \{g_W\} \subset \{g_M, g_W\} = S$$



# Matching dynamics

Consider the following dynamic,  $t = 1, 2, \ldots$ 

- State space is G.
- Every period, a man and a woman meet.
- If currently matched to one another, they consider separating.
  - Separate if at least one accepts separation.
- Otherwise, they consider leaving existing partners and matching with one another.
  - Match if **both** accept this.



|                                | $w_1$ | $w_2$ |  |  |
|--------------------------------|-------|-------|--|--|
| $m_1$                          | 8,2   | 7,9   |  |  |
| $m_2$                          | 5, 6  | 7,5   |  |  |
| Payoff of zero when unmatched. |       |       |  |  |



# **Matching dynamics**

## From state $g^t$ , faced with the prospect of g', a player i will

- Accept g' with high probability if  $u_i(g') > u_i(g^t)$ .
- Accept g' with probability  $\varepsilon^{\varphi(u_i(g^t), u_i(g'))}$  if  $u_i(g') < u_i(g^t)$ .

## Definition (Condition dependence)

Behavior is condition dependent if  $\varphi$  is such that, for all  $u, u', v, v' \in \mathbb{R}$ , u > u', v > v', u > v, we have that  $\varphi(u, u') > \varphi(v, v')$ .

Acceptance of a detrimental change is less likely when current payoffs are higher.



# Condition dependence and Rawlsian matchings

### For sets $M,\,W,$ let ${\mathcal U}$ be the set of all possible utilities.

Let  ${\cal S}{\cal S}$  denote the set of stochastically stable matchings.

#### Theorem

- 1. If behavior is condition dependent, then  $\forall u \in U$ , we have  $SS \subseteq Ra$ .
- 2. If behavior is not condition dependent, then  $\exists u \in U$  such that  $SS \not\subseteq Ra$ .

That is, an axiomatization of Rawlsian stable matchings in terms of behavioral rules.



# **Condition dependence and Rawlsian matchings**

- To leave a stable matching requires some player to accept a change that leads to a lower payoff.
- Under condition dependence, it is easier to accept such a change when current payoffs are low.
- The makes Rawlsian stable matchings the stable matchings that are hardest to leave with an initial mistake (one-shot stability).
- There exists a result that, in this type of matching problem, stochastically stable matchings are contained within the one-shot stable matchings.



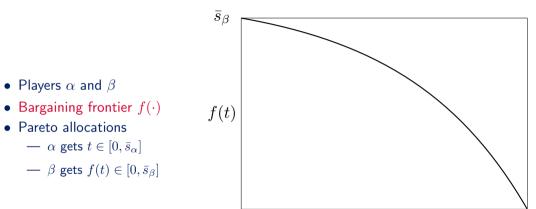
# Bargaining solutions

A characterization of solutions in terms of dynamic processes.





# **Bargaining frontier**



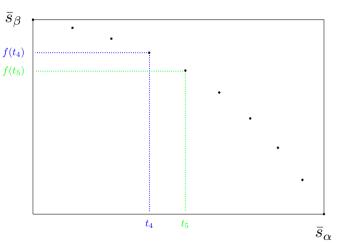
 $\bar{s}_{\alpha}$ 

t



# Bargaining frontier

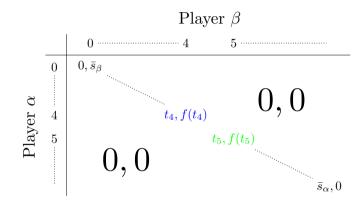
- Discretize frontier
- Take payoff pairs





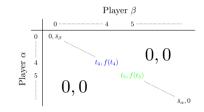
## **Coordination** game

- Put payoffs on diagonal of coordination game
- Zero payoff off-diagonal





- Consider two populations,  $\alpha$  and  $\beta$
- Each population has size N
- State is strategies for every player
- Periods  $t = 1, 2, \ldots$

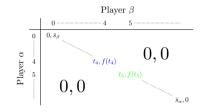




- A player updating at time t plays a perturbed best response to the mixture given by the shares of strategies in the other population at time t 1.
- Consider four types of perturbations, varying on two dimensions
  - Uniform vs. Logit (have already seen these)
  - Intentional vs. Unintentional

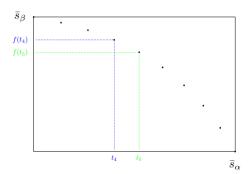


- Unintentional means no change (!)
- Intentional truncates perturbations so that a player never asks for less than his best response.
- For example, if an  $\alpha$ -player's best response is strategy 4, then under intentional perturbations
  - may play strategy 5 (as a perturbation)
  - will never play strategy 3





- Unintentional favours big transitions, e.g.
  - $\alpha$ -players demand nothing
  - $\beta$ -players respond demanding everything
  - $\bar{s}_{lpha}$  and  $\bar{s}_{eta}$  matter
- Intentional favours small transitions, e.g.
  - $\alpha$ -players demand a little more
  - $\beta\text{-players}$  respond demanding a little less
  - slope of  $f(\cdot)$  matters
- Logit favours perturbations by those currently receiving low payoffs



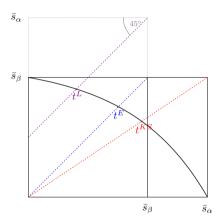


# **Convergence to bargaining solutions**

#### Theorem

For fine discretization, large N, SS states approximate the following bargaining solutions

|         | Unintentional     | Intentional |
|---------|-------------------|-------------|
| Uniform | Kalai-Smorodinsky | Nash        |
| Logit   | Logit b.s.        | Egalitarian |





- Of course, there is more to the Evolutionary Nash Program.
- General cooperative games, recontracting, convergence to the core, selection within the core, general behavioral rules in matching, matching with transferable utility.
- In general, the question of how aspects of culture arise and persist, embodied in collective institutions and conventions.
- Evolution of the constraints themselves: individual constraints, collective constraints, the traits that shape behavior.



newton@kier.kyoto-u.ac.jp

For references, see reading list.